Sequencing Glycosaminoglycans using Recognition Tunneling Nanopores
使用识别隧道纳米孔对糖胺聚糖进行测序
基本信息
- 批准号:9752985
- 负责人:
- 金额:$ 40.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBiological MarkersBiological PhenomenaBloodBlood coagulationCellsChargeComplexDNADNA PrimersDNA biosynthesisDNA polymerase ADNA-Directed DNA PolymeraseDataData AnalysesDatabasesDevelopmentDevicesDisaccharidesElectrodesElectronsEnzyme KineticsEnzymesEventFundingGenomeGlycosaminoglycansGoalsGrantHeterogeneityHigh-Throughput DNA SequencingImmobilizationIndividualInfectionInflammationLeukocyte TraffickingMammalsMediatingMediator of activation proteinMethodsModelingMonosaccharidesNatural regenerationNeoplasm MetastasisOligonucleotidesOligosaccharidesOrganismPathogenicityPharmacologyPhasePhysiologicalPolymerasePolysaccharidesPositioning AttributePreparationProceduresPropertyProteinsSamplingSchemeSenile PlaquesSideSignal TransductionSignaling ProteinSiteSpeedStereoisomerStructureTechniquesTechnologyTherapeuticTherapeutic UsesTimeTissuesUnspecified or Sulfate Ion SulfatesValidationWorkamyloid formationanalytical methodbasecancer cellcostdensitydesignelectric fieldextracellularimprovedinterestmonomernanoparticlenanoporenovelpathogenic microbepolysulfated glycosaminoglycanprogramssingle moleculesolid statestemsugarsulfation
项目摘要
Project Summary
Glycosaminoglycans (GAGs) are large, linear, sulfated polysaccharides found in many organisms, including all
mammals. Interests in GAG structures stem from GAGs’ diverse biological activities in phenomena such as
tissue development/regeneration, inflammation, blood coagulation and amyloid plaque formation. In addition to
their therapeutic use, GAGs have also been used as biomarkers. Due to complexity and heterogeneity of their
structures, GAG sequencing has been difficult, if not impossible. For the last two years, we have been developing
a single molecule method to sequence GAGs using recognition tunneling nanopore (RTP). A RTP device is
composed of a recognition tunneling junction embedded in a nanopore. It sequentially “read” a mono- or di-
saccharide unit when the sugars form a transient complex with recognition molecules attached to two tunneling
electrodes during translocation of a polysaccharide through the nanopore. Advantages of a single molecule
method include circumvention of the need to obtain homogeneous samples of GAGs and ability to analyze intact
GAG chains, which most of the existing analytical techniques are unable to do. In the R21 phase, we have shown
that recognition tunneling (RT) signals from disaccharide building blocks of GAGs possess unique signatures
that can be used in distinguishing different stereoisomers. We also improved manufacturing of RTPs and showed
that conductance of the RT signals alone was sufficient to determine GAG types. Finally, we demonstrated that
GAG chains can translocate solid-state nanopore unaided. However, the speed of translocation is too fast to
collect sufficient amount of RT signals of individual structure units. To reduce the translocation speed, we have
designed a Φ29 DNA polymerase mediated ratcheting mechanism to control the translocation of GAGs conju-
gated to a DNA primer. In this application, we will develop such a GAG-ratcheting RTP device for GAG sequenc-
ing. In particular, we will complete the following aims: (1) Build a RT reference database for RTP sequencing of
GAGs. Using the most up-to-date RTP devices, we will analyze the RT signatures of GAG building blocks teth-
ered to nanoparticles. This set-up mimics the conditions during actual sequencing and should produce data that
more accurately reflect those collected during sequencing. (2) We will develop a method to fabricate GAG-ratch-
eting RTPs. We will immobilize a single Φ29 DNA polymerase to the upper rim of the nanopore, so it can perform
rolling circle extension using a circular template and a DNA primer whose 5’ end is conjugated to the reducing
end of the GAG chain to be sequenced. As the Φ29 polymerase extends the DNA primer, it will push the GAG
chain pass the RT junction at a rate slow enough for RT junction to interact with individual GAG monosaccharide
for recording of sufficient electrical signals. Our goal is to complete the two aims in the first two years, allowing
us to perform GAG sequencing and cross validation of the device in the final year.
项目摘要
糖胺聚糖(插科打)是在许多生物中发现的大型,线性的,硫酸的多糖,包括所有生物
哺乳动物。对插科打结构的兴趣源于插科打s的潜水生物学活动,例如
组织发育/再生,感染,血液凝结和淀粉样斑块形成。此外
他们的治疗用途,插科打s也被用作生物标志物。由于其复杂性和异质性
结构,插科打测序是困难的,即使不是不可能的。在过去的两年中,我们一直在发展
使用识别隧道纳米孔(RTP)对插科打ag的单分子方法。 RTP设备是
由嵌入在纳米孔中的识别隧道连接组成。它依次“读取”单声道或单词
当糖形成瞬态复合物,并带有识别分子,糖糖单位连接到两个隧道
多糖通过纳米孔转运过程中的电极。单分子的优点
方法包括规定获得插科打的均匀样本的需求和完整的能力
插科打链,大多数现有的分析技术无法做到。在R21阶段,我们显示了
来自二糖的识别隧道(RT)信号具有独特的签名
可以用来区分不同的立体异构体。我们还改进了RTP的制造
仅RT信号的电导就足以确定GAG类型。最后,我们证明了
插科打链可以将固定状态纳米孔易位。但是,易位速度太快了
收集足够数量的单个结构单元的RT信号。为了降低易位速度,我们有
设计了φ29DNA聚合酶介导的赛车机制,以控制堵嘴的易位。
门控到DNA底漆。在此应用程序中,我们将开发这样的GAG骑行RTP设备用于GAG序列 -
ing。特别是,我们将完成以下目的:(1)构建用于RTP测序的RT参考数据库
插科打。使用最新的RTP设备,我们将分析堵嘴构建块的RT签名TETH-
纳入纳米颗粒。此设置模仿实际测序期间的条件,并应产生数据
更准确地反映了在测序过程中收集的那些。 (2)我们将开发一种制造Gag束缚的方法
Etuning RTP。我们将将单个φ29DNA聚合酶固定到纳米孔的上边缘,以便它可以执行
使用圆形模板和DNA底漆的滚动圆延伸,其5'端与还原相结合
插科打链的末端要测序。随着φ29聚合酶延伸DNA底漆,它将推动GAG
链条以足够慢的速率通过RT连接,以使RT连接与单个GAG单糖相互作用
用于记录足够的电信号。我们的目标是在头两年完成两个目标,允许
我们在最后一年对设备进行插科打测序和交叉验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu Wang其他文献
Xu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xu Wang', 18)}}的其他基金
Sequencing Glycosaminoglycans using Single Molecule Enzyme Conductance Fluctuations
使用单分子酶电导波动对糖胺聚糖进行测序
- 批准号:
10568069 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Interactions of pleiotrophin with receptor type protein tyrosine phosphatase
多效蛋白与受体型蛋白酪氨酸磷酸酶的相互作用
- 批准号:
9988093 - 财政年份:2017
- 资助金额:
$ 40.62万 - 项目类别:
Interactions of pleiotrophin with receptor type protein tyrosine phosphatase
多效蛋白与受体型蛋白酪氨酸磷酸酶的相互作用
- 批准号:
9236435 - 财政年份:2017
- 资助金额:
$ 40.62万 - 项目类别:
Structural Interactions of Bacterial Adhesin with Glycosaminoglycans
细菌粘附素与糖胺聚糖的结构相互作用
- 批准号:
8204258 - 财政年份:2009
- 资助金额:
$ 40.62万 - 项目类别:
Structural Interactions of Bacterial Adhesin with Glycosaminoglycans
细菌粘附素与糖胺聚糖的结构相互作用
- 批准号:
8400895 - 财政年份:2009
- 资助金额:
$ 40.62万 - 项目类别:
Structural Interactions of Bacterial Adhesin with Glycosaminoglycans
细菌粘附素与糖胺聚糖的结构相互作用
- 批准号:
7713686 - 财政年份:2009
- 资助金额:
$ 40.62万 - 项目类别:
Structural Interactions of Bacterial Adhesin with Glycosaminoglycans
细菌粘附素与糖胺聚糖的结构相互作用
- 批准号:
8209076 - 财政年份:2009
- 资助金额:
$ 40.62万 - 项目类别:
相似国自然基金
新型活性酯靶向赖氨酸的活细胞化学标记方法及其生物学应用
- 批准号:22307084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
元素标记单颗粒等离子体质谱数字检测新方法及其生物分析应用
- 批准号:22374111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于2bRAD-M技术探索尸体微生物基因组分子标记的时相变化规律及法医学应用
- 批准号:82371896
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习的重度抑郁症亚型识别和个体化生物标记解析研究
- 批准号:62301549
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
- 批准号:82360339
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Sequencing Glycosaminoglycans using Single Molecule Enzyme Conductance Fluctuations
使用单分子酶电导波动对糖胺聚糖进行测序
- 批准号:
10568069 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Neurophysiologic Correlates of Sensory Over-Responsivity in Tourette Syndrome
抽动秽语综合征感觉过度反应的神经生理学相关性
- 批准号:
10644333 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Probing the cardioprotective effects of sulfane sulfurs with next generation fluorescent sensors
使用下一代荧光传感器探讨硫烷硫的心脏保护作用
- 批准号:
10749202 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Characterizing the Effect of Altered CSF and Blood Flow Dynamics on Alzheimer’s Disease Proteinopathy, Brain Health, and Cognition
表征脑脊液和血流动力学改变对阿尔茨海默病蛋白病、大脑健康和认知的影响
- 批准号:
10433391 - 财政年份:2022
- 资助金额:
$ 40.62万 - 项目类别: