Protein Dynamics in Site-Specific DNA Recombination
位点特异性 DNA 重组中的蛋白质动力学
基本信息
- 批准号:9883005
- 负责人:
- 金额:$ 10.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAffectAnimal ModelBindingBiotechnologyCell divisionCell physiologyCellsChromosome PairingCicatrixCommunicationComplexCruciform DNACrystallizationDNADNA BindingDNA SequenceEngineeringEnterobacteria phage P1 Cre recombinaseEnzymesExcisionFree EnergyGenesGenetic EngineeringGenetic RecombinationGeometryGoalsHealthHomoHumanIntegration Host FactorsIsomerismIsotope LabelingKnowledgeLabelLeftLigationMapsMeasurementMeasuresMediatingMethodsMolecular ConformationNMR SpectroscopyPathogenesisPathway interactionsPhosphotyrosineProcessProtein DynamicsProteinsProtomerReactionReagentRelaxationResolutionRoleSeriesSiteSpacer DNASpecificityStructureSynapsesTechniquesTechnologyTherapeuticTyrosineVariantVirus DiseasesWorkZonula Adherensbasecofactordesigndimerexperimental studyflexibilitygenome editingimprovedinnovationinsightrecombinaserepairedrestriction enzymestructured datatool
项目摘要
Project Summary/Abstract
This goal of this proposal is to advance our understanding of the mechanisms by which tyrosine recombinases
recognize and assemble on their target DNA sequences and achieve coordinated pairwise cleavage of DNA
strands to reach a recombined product. The proposal is significant because tyrosine recombinases are widely
used genome editing tools, but their potential for improving human health is currently hindered by lack of
understanding of their mechanisms for site selection and for control over activity and recombination direction
(i.e., integration versus excision). Innovation in this proposal arises from the application of solution NMR to
address mechanistic knowledge gaps left unanswered by the many high resolution crystal structures of
tyrosine recombinases in tetrameric complexes with DNA. Those structures have provided crisp snapshots of
some of the important intermediates in the recombination pathway, but provide limited insight into the
intermediates that precede them, or into the mechanisms that interconvert them. Our approach combines
powerful protein- and DNA-engineering with sophisticated isotope labeling and NMR methods to characterize
dynamics that enable interconversion of key intermediates in site-specific DNA recombination, focusing on
those leading to site-specific assembly of the tetrameric synaptic complex, allosteric control over DNA
cleavage, and isomerization of the Holliday junction (HJ) intermediate.
To understand the conformational changes in both protein and DNA that accompany site selection, dimer
assembly, tetramer synapsis and protomer activation, we will use solution NMR spectroscopy to: (1) determine
the solution structure of Cre recombinase alone, and bound in pre-synapsed complexes with loxP DNA; (2)
determine the role of protein dynamics in activating Cre for DNA cleavage by measuring dynamics in Cre and
pre-synaptic complexes with DNA; (3) study how DNA intrinsic dynamics affects Cre recognition, synaptic
assembly, control over Cre activity, and direction of recombination; (4) characterize the dynamic and allosteric
communication pathways that enable isomerization of the central HJ for progression through the recombination
reaction. To enable the NMR experiments on large homo-oligomeric complexes, we will leverage an arsenal of
reagents and techniques for selective labeling of protein and DNA molecules, and for assembly of chimeric
Cre-DNA complexes; together with uniform deuteration and TROSY methods, the simplified NMR spectra will
facilitate resonance assignments and quantitative relaxation measurements. The proposed studies will
advance our understanding of the role of dynamics in DNA recombination, and in DNA binding and remodeling
enzymes in general. This knowledge could broadly impact biotechnology and its biomedical applications by
facilitating the design of Cre variants with defined DNA sequence specificity and improved efficiency, and
suggest new avenues for controlling its activity.
项目概要/摘要
该提案的目标是增进我们对酪氨酸重组酶机制的理解
识别并组装其目标 DNA 序列并实现 DNA 的协调成对切割
链以达到重组产物。该提案意义重大,因为酪氨酸重组酶被广泛应用
使用基因组编辑工具,但其改善人类健康的潜力目前因缺乏
了解其位点选择机制以及控制活性和重组方向的机制
(即整合与切除)。该提案的创新源于溶液核磁共振的应用
解决许多高分辨率晶体结构留下的机械知识空白
酪氨酸重组酶与 DNA 形成四聚体复合物。这些结构提供了清晰的快照
重组途径中的一些重要中间体,但对重组途径的了解有限
它们之前的中间体,或进入它们相互转化的机制。我们的方法结合了
强大的蛋白质和 DNA 工程,具有复杂的同位素标记和 NMR 方法来表征
能够实现位点特异性 DNA 重组中关键中间体相互转化的动力学,重点关注
那些导致四聚体突触复合体的位点特异性组装、DNA变构控制
霍利迪连接体 (HJ) 中间体的裂解和异构化。
为了了解蛋白质和 DNA 中伴随位点选择的构象变化,二聚体
组装、四聚体突触和原聚体激活,我们将使用溶液核磁共振波谱来:(1)确定
单独的 Cre 重组酶的溶液结构,并与 loxP DNA 结合在突触前复合物中; (2)
通过测量 Cre 和 DNA 裂解中的动力学,确定蛋白质动力学在激活 Cre 中的作用
与 DNA 的突触前复合物; (3)研究DNA内在动力学如何影响Cre识别、突触
组装、Cre 活性控制和重组方向; (4) 表征动态和变构
使中央 HJ 异构化并通过重组进行进展的通讯途径
反应。为了能够对大型同源寡聚复合物进行 NMR 实验,我们将利用一系列
用于选择性标记蛋白质和 DNA 分子以及用于组装嵌合体的试剂和技术
Cre-DNA 复合物;与均匀氘化和 TROSY 方法一起,简化的 NMR 谱将
促进共振分配和定量弛豫测量。拟议的研究将
增进我们对 DNA 重组、DNA 结合和重塑中动力学作用的理解
一般而言,酶。这些知识可能会广泛影响生物技术及其生物医学应用
促进具有明确 DNA 序列特异性和更高效率的 Cre 变体的设计,以及
提出控制其活动的新途径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nearest-Neighbor Effects Modulate loxP Spacer DNA Chemical Shifts and Guide Oligonucleotide Design for Nuclear Magnetic Resonance Studies.
- DOI:10.1021/acs.biochem.1c00571
- 发表时间:2022-01-18
- 期刊:
- 影响因子:2.9
- 作者:Wagner, Nicole;Foster, Mark P.
- 通讯作者:Foster, Mark P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK P. FOSTER其他文献
MARK P. FOSTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK P. FOSTER', 18)}}的其他基金
Dynamics and allostery in protein-RNA regulation
蛋白质-RNA 调节的动力学和变构
- 批准号:
9982535 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Brd4 interactions with host and viral proteins via the extra-terminal domain
Brd4 通过末端外结构域与宿主和病毒蛋白相互作用
- 批准号:
9119472 - 财政年份:2016
- 资助金额:
$ 10.49万 - 项目类别:
Brd4 interactions with host and viral proteins via the extra-terminal domain
Brd4 通过末端外结构域与宿主和病毒蛋白相互作用
- 批准号:
9207412 - 财政年份:2016
- 资助金额:
$ 10.49万 - 项目类别:
Structure and Function in Catalytic RNP Assembly
催化 RNP 组装的结构和功能
- 批准号:
7936606 - 财政年份:2009
- 资助金额:
$ 10.49万 - 项目类别:
Structural and Dynamics in Allosteric Gene Regulation
变构基因调控的结构和动力学
- 批准号:
7627232 - 财政年份:2007
- 资助金额:
$ 10.49万 - 项目类别:
Structural and Dynamics in Allosteric Gene Regulation
变构基因调控的结构和动力学
- 批准号:
7848993 - 财政年份:2007
- 资助金额:
$ 10.49万 - 项目类别:
Structural and Dynamics in Allosteric Gene Regulation
变构基因调控的结构和动力学
- 批准号:
7319760 - 财政年份:2007
- 资助金额:
$ 10.49万 - 项目类别:
Structural and Dynamics in Allosteric Gene Regulation
变构基因调控的结构和动力学
- 批准号:
7470022 - 财政年份:2007
- 资助金额:
$ 10.49万 - 项目类别:
Structure and Function in Catalytic RNP Assembly
催化 RNP 组装的结构和功能
- 批准号:
6879079 - 财政年份:2004
- 资助金额:
$ 10.49万 - 项目类别:
Structure and Function in Catalytic RNP Assembly
催化 RNP 组装的结构和功能
- 批准号:
7393785 - 财政年份:2004
- 资助金额:
$ 10.49万 - 项目类别:
相似国自然基金
htsA蛋白通过影响碳水化合物摄取抵抗宿主免疫杀伤的机制研究
- 批准号:82302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
WASP通过影响IL-6R内吞调控Tfh发育和功能
- 批准号:82302055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脱氧胆酸通过c-Abl-YAP通路调控肠粘膜屏障功能对肝脂肪变形成影响
- 批准号:82370558
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 10.49万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别: