The regulatory role of chromatin interaction in pluripotency and differentiation
染色质相互作用在多能性和分化中的调节作用
基本信息
- 批准号:8714180
- 负责人:
- 金额:$ 5.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultArchitectureAreaBasic ScienceBindingBiochemistryBiologicalBiologyCell NucleusCellsCellular biologyChIP-seqChromatinChromatin StructureChromosomesComplexCoupledDNADataData AnalysesDevelopmentDisease modelDistantEpigenetic ProcessGene ExpressionGene Expression RegulationGene StructureGenesGenetic TranscriptionGenomicsGoalsHealthHumanImmunoprecipitationInstitutionKnock-outKnowledgeLaboratoriesLearningMapsMass Spectrum AnalysisMediatingMediator of activation proteinMentorsMethodsMolecular ConformationMonitorMultipotent Stem CellsPlayPluripotent Stem CellsProcessProteinsRNARegenerative MedicineRegulationRegulatory ElementRelative (related person)ResearchResearch DesignResearch Project GrantsResourcesRoleSamplingSiteSourceStagingStem cellsStudentsSystemTechnologyTestingTherapeutic Human ExperimentationTissue EngineeringTrainingTraining ProgramsWestern BlottingWorkWritingadult stem cellcareer developmentcell typechromatin modificationcohesindeep sequencingdrug testingembryonic stem cellgenome-wideimprovedinduced pluripotent stem cellinstrumentationinterestlarge-scale databasemeetingsmultipotent cellnerve stem cellnoveloverexpressionpluripotencypublic health relevanceresearch studyself-renewalstem cell biologytooltrait
项目摘要
DESCRIPTION (provided by applicant): Pluripotent stem cells are a renewable cell source with the capacity to differentiate into any specialized cell in the adult body. These traits make pluripotent cells a tractable tool for studying normal and dysfunctional biological networks in the
context of development. Therefore, pluripotent cells have the potential to greatly impact human health through drug testing, disease modeling, tissue engineering, and regenerative medicine. Harnessing this potential requires a detailed understanding of the biology that governs pluripotency and directs differentiation. The mechanisms that guide these processes have been studied extensively at the protein and RNA level; however, the role of epigenetic regulation has only recently come into focus. A largely unexplored aspect of epigenetic regulation is the spatial organization of genes relative to distant genomic regions and regulatory elements. It is our central hypothesis that genomic regions important for pluripotency associate in the nucleus and change upon induction of differentiation and reprogramming. Charting DNA interaction and its dynamics will resolve this regulatory system in pluripotent cells and may provide a means to manipulate these cells for research and therapeutic purposes. Specific Aims: The first aim in this proposal will map long-range DNA interaction for key pluripotency genes in pluripotent cells. The second aim tracks chromatin interactions at various stages of development and also explores the dynamics of DNA interaction during reprogramming. The third aim identifies novel protein components that mediate chromatin interaction and applies biochemistry to characterize these proteins. Study Design: We propose research that combines expertise in stem cell biology with emerging genomic technology. Specifically, we will use modified circular chromosome conformation capture (m4C) to examine DNA interaction for key pluripotency genes Oct4 and Sox2 in pluripotent and multipotent stem cells. We will also track chromatin organization following the induction of pluripotency by sampling cells at intermediate stages of reprogramming. By characterizing proteins that mediate chromatin structure, we will determine key epigenetic regulators. Through targeted knockdown of these regulators, we will establish their functional role in pluripotency. These data, coupled to existing gene expression, chromatin modification, and ChIP results will reveal in unparalleled detail the epigenetic regulatory mechanisms at play during pluripotency, differentiation, and reprogramming. The sponsoring laboratory has numerous resources available to accomplish these goals, including instrumentation and technical training for m4C and deep sequencing. Resources are also available through the host institution for computational support and large-scale data analysis. The training program includes numerous opportunities for career development through cutting edge research, grant writing, and student mentoring.
描述(由申请人提供):多能干细胞是一种可再生细胞来源,具有分化成成人体内任何特化细胞的能力。这些特征使多能细胞成为研究正常和功能失调的生物网络的易于处理的工具。
发展的背景。因此,多能细胞有潜力通过药物测试、疾病建模、组织工程和再生医学极大地影响人类健康。利用这种潜力需要详细了解控制多能性和指导分化的生物学。指导这些过程的机制已在蛋白质和 RNA 水平上进行了广泛的研究;然而,表观遗传调控的作用最近才引起人们的关注。表观遗传调控的一个很大程度上未被探索的方面是基因相对于遥远基因组区域和调控元件的空间组织。我们的中心假设是,对于多能性重要的基因组区域在细胞核中关联并在诱导分化和重编程时发生变化。绘制 DNA 相互作用及其动态图将解决多能细胞中的这一调节系统,并可能提供一种操纵这些细胞用于研究和治疗目的的方法。具体目标:该提案的第一个目标是绘制多能细胞中关键多能性基因的长程 DNA 相互作用图谱。第二个目标是追踪发育各个阶段的染色质相互作用,并探索重编程过程中 DNA 相互作用的动态。第三个目标是确定介导染色质相互作用的新型蛋白质成分,并应用生物化学来表征这些蛋白质。研究设计:我们提出将干细胞生物学专业知识与新兴基因组技术相结合的研究。具体来说,我们将使用改良的环状染色体构象捕获 (m4C) 来检查多能干细胞中关键多能基因 Oct4 和 Sox2 的 DNA 相互作用。我们还将通过在重编程的中间阶段取样细胞来追踪多能性诱导后的染色质组织。通过表征介导染色质结构的蛋白质,我们将确定关键的表观遗传调节因子。通过有针对性地敲除这些调节因子,我们将确定它们在多能性中的功能作用。这些数据与现有的基因表达、染色质修饰和 ChIP 结果相结合,将以无与伦比的细节揭示多能性、分化和重编程过程中发挥作用的表观遗传调控机制。赞助实验室拥有大量可用于实现这些目标的资源,包括 m4C 和深度测序的仪器和技术培训。还可以通过主办机构获得计算支持和大规模数据分析的资源。培训计划包括通过前沿研究、资助写作和学生指导提供大量职业发展机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Brumbaugh其他文献
Justin Brumbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Brumbaugh', 18)}}的其他基金
DEFINING REGULATORY ROLES FOR HISTONE H3 METHYLATION IN DEVELOPMENT
定义组蛋白 H3 甲基化在发育中的调控作用
- 批准号:
10447783 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
DEFINING REGULATORY ROLES FOR HISTONE H3 METHYLATION IN DEVELOPMENT
定义组蛋白 H3 甲基化在发育中的调控作用
- 批准号:
10562886 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
DEFINING REGULATORY ROLES FOR HISTONE H3 METHYLATION IN DEVELOPMENT
定义组蛋白 H3 甲基化在发育中的调控作用
- 批准号:
10577382 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
DEFINING REGULATORY ROLES FOR HISTONE H3 METHYLATION IN DEVELOPMENT
定义组蛋白 H3 甲基化在发育中的调控作用
- 批准号:
10622583 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
DEFINING REGULATORY ROLES FOR HISTONE H3 METHYLATION IN DEVELOPMENT
定义组蛋白 H3 甲基化在发育中的调控作用
- 批准号:
10275899 - 财政年份:2021
- 资助金额:
$ 5.51万 - 项目类别:
The regulatory role of chromatin interaction in pluripotency and differentiation
染色质相互作用在多能性和分化中的调节作用
- 批准号:
8918305 - 财政年份:2014
- 资助金额:
$ 5.51万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 5.51万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 5.51万 - 项目类别:
Muscle Mass: a Critical but Missing Component in Muscle Modeling and Simulation
肌肉质量:肌肉建模和模拟中关键但缺失的组成部分
- 批准号:
10586547 - 财政年份:2023
- 资助金额:
$ 5.51万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 5.51万 - 项目类别: