Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
基本信息
- 批准号:9751025
- 负责人:
- 金额:$ 44.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAge of OnsetAlgorithmsAntiepileptic AgentsBenchmarkingCapitalCharacteristicsClassificationClinicalClinical DataComplexCountryCoupledDataData CollectionData SetDatabasesDevelopmentDiagnosticDiagnostic ProcedureDiffusion Magnetic Resonance ImagingDiseaseElectroencephalographyEpilepsyEthnic OriginEvaluationGeographyGoldGrantImageIndividualInfrastructureInstitutionLeadLeftLesionLiftingMachine LearningMagnetic Resonance ImagingMethodsModelingMultimodal ImagingNational Institute of Neurological Disorders and StrokeNetwork-basedNeurologicOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPharmacotherapyPlayPopulationPostoperative PeriodPrediction of Response to TherapyProbabilityReproducibilityReproducibility of ResultsResearchResourcesRoleSample SizeSamplingScanningSeizuresSiteStructureSyndromeTalentsTechniquesTemporal Lobe EpilepsyTestingThinnessUnited States National Institutes of HealthValidationbasebiomarker identificationbrain abnormalitiesclassification algorithmcohortcomputing resourcesconnectomecostcost effectivedeep learningdesigngray matterhands-on learningimaging studyimprovedinnovationinterestmachine learning algorithmnervous system disorderneural networkneuroimagingnovelnovel strategiespersonalized approachsexstandard of caresurgery outcomewhite matter
项目摘要
ABSTRACT
Epilepsy is a devastating neurological illness that affects 65 million people worldwide. Approximately
one-third of patients affected do not respond to antiepileptic drug therapy and require a thorough diagnostic
work-up. Structural neuroimaging plays a pivotal role in the diagnostic evaluation of patients with focal
epilepsy, identifying visible lesions in many patients that often coincide with the seizure focus. However, 20-
40% of patients have normal-appearing MRIs and this number appears to be growing. As a result, there is
increased interest in identifying subtle gray and white matter network changes on non-invasive, quantitative
MRI, including structural MRI (sMRI) and diffusion tensor imaging (DTI), that can help to delineate the
epileptogenic network. Unfortunately, methods for selecting optimal features from sMRI/DTI data in patients
with epilepsy that can address these clinical challenges have not been developed. There are at least two
major barriers that have limited progress in this field. First, sample sizes have been insufficient to develop
reliable classification algorithms in patients with focal epilepsy that lead to reproducible findings. The
high cost of data collection - few studies scan more than 50-60 patients - has led to underpowered studies
whose findings often fail to replicate and cannot adequately model confounds. Second, high computational
demands have previously limited the feasibility of using sophisticated, feature-selection (i.e., Machine
Learning; ML) algorithms in clinical settings.
A new, large-scale data initiative (i.e., ENIGMA-epilepsy) acquired from 24 sites world-wide is now
lifting these barriers and allowing for the development and validation of innovative data-driven approaches
aimed at optimizing the use of MRI data in the evaluation of epilepsy. In this grant, we will leverage data
collected through ENIGMA-Epilepsy—a new, cost-effective, innovative global approach that unblocks the
power logjam by merging resources, data, capital infrastructure and talents of leading epilepsy centers
from 14 countries across the world (2,149 patient and 1,727 healthy control MRI/DTI datasets). We will
also leverage new developments in ML (i.e., deep learning) and network-based modeling (i.e., connectome-
based approaches) and test whether these novel approaches improve upon classification accuracy relative to
simpler, user-driven models. Our primary aim will be to test the ability of our deep learning approach (i.e.,
dense neural networks) to lateralize the seizure focus. In an exploratory aim, we will test the ability of our
model to predict post-operative seizure outcomes. ENIGMA's harmonized approach will allow us to test our
approach in over 24 datasets, diverse in age, ethnicity, age of onset, epilepsy duration, and surgical outcomes.
This R-21 application addresses NIH's call for more reproducible studies by introducing a highly-
powered design, and is directly aligned with NINDS's 2014 Epilepsy Benchmarks, which encourage the
identification of biomarkers for assessing or predicting treatment response in patients with epilepsy.
抽象的
癫痫是一种毁灭性的神经系统疾病,影响着全世界大约 6500 万人。
三分之一受影响的患者对抗癫痫药物治疗没有反应,需要彻底诊断
结构神经影像学检查在局灶性患者的诊断评估中发挥着关键作用。
癫痫,识别许多患者的可见病变,这些病变通常与癫痫病灶一致,但是,20-
40% 的患者 MRI 表现正常,而且这个数字似乎还在增长。
对非侵入性、定量识别微妙的灰质和白质网络变化的兴趣增加
MRI,包括结构 MRI (sMRI) 和扩散张量成像 (DTI),可以帮助描绘
不幸的是,从患者的 sMRI/DTI 数据中选择最佳特征的方法。
至少有两种药物可以解决这些临床挑战。
首先,样本量不足以开发。
局灶性癫痫患者的可靠分类算法可得出可重复的结果。
数据收集成本高昂 - 很少有研究扫描超过 50-60 名患者 - 导致研究动力不足
其研究结果往往无法复制,也无法充分模拟混杂因素。
以前的需求限制了使用复杂的特征选择(即机器
临床环境中的学习;ML)算法。
从全球 24 个站点获取的一项新的大规模数据计划(即 ENIGMA-epilepsy)现已投入使用
消除这些障碍并允许开发和验证创新的数据驱动方法
旨在优化 MRI 数据在癫痫评估中的使用。在这笔资助中,我们将利用数据。
通过 ENIGMA-Epilepsy 收集 - 一种新的、具有成本效益的、创新的全球方法,可以解除障碍
通过合并领先癫痫中心的资源、数据、资本基础设施和人才来解决电力僵局
来自全球 14 个国家(2,149 名患者和 1,727 名健康对照 MRI/DTI 数据集)。
还利用机器学习(即深度学习)和基于网络的建模(即连接组)的新发展
基于方法)并测试这些新方法是否相对于分类精度有所提高
我们的主要目标是测试我们的深度学习方法的能力(即,
密集的神经网络)来偏向癫痫焦点在探索性目标中,我们将测试我们的能力。
ENIGMA 的统一方法将使我们能够测试我们的模型来预测术后癫痫发作结果。
该方法在超过 24 个数据集中进行,这些数据集的年龄、种族、发病年龄、癫痫持续时间和手术结果各不相同。
该 R-21 应用程序通过引入高度重复性的方法,满足了 NIH 对更具可重复性研究的呼吁
动力设计,并直接与 NINDS 的 2014 年癫痫基准保持一致,该基准鼓励
鉴定用于评估或预测癫痫患者治疗反应的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo F Bonilha其他文献
Leonardo F Bonilha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
9811129 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10241330 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10649724 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10470912 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10005301 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10619937 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10158551 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 44.43万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 44.43万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 44.43万 - 项目类别: