Therapeutic Irradiation and Brain Functions
治疗辐射和脑功能
基本信息
- 批准号:9242504
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-09 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsAstrocytesBehavioralBrainBrain NeoplasmsCCL2 geneCellular StructuresChronicClinicalClinical TrialsCognitionCognitive deficitsCranial IrradiationDataDiscriminationDoseEnvironmentEvolutionFlow CytometryFunctional disorderFundingGenesGeneticGenetic ModelsGenetic TranscriptionGenotypeGoalsHippocampus (Brain)ImmuneImmunohistochemistryImpaired cognitionInfiltrationInflammationInflammatoryInflammatory ResponseInnate Immune SystemIonizing radiationKineticsLate EffectsLearningLightLinkMacrophage Colony-Stimulating Factor ReceptorMeasuresMediatingMemoryMemory impairmentMethodsMicrogliaMolecularMultivariate AnalysisMusMyeloid CellsNerve DegenerationNervous System PhysiologyNeuraxisNeuronsOxidative StressPathogenicityPeripheralPharmacologyPhasePhenotypePlayPopulationPredispositionProcessQuantitative Reverse Transcriptase PCRRadiationRadiation InjuriesRecruitment ActivityReporterResearchResearch InfrastructureRoleSignal TransductionStructureSynapsesSynaptic TransmissionTemporal LobeTestingTherapeuticTimeWorkbiological adaptation to stresschemokine receptorclinically relevantcognitive changecognitive functioncombinatorialinformation processinginjuredinnovationirradiationmacrophagemonocytemouse modelneuroinflammationnew therapeutic targetnovelpermissivenesspreventradiation-induced cognitive dysfunctionrelating to nervous systemresponsesynaptic functiontreatment strategy
项目摘要
Project Summary
Therapeutic irradiation is commonly used to treat both primary and metastatic brain tumors and can cause
a number of late effects including progressive cognitive dysfunction. There is no treatment currently available
that can even partially reverse cognitive changes observed after radiation injury. Specifically, irradiation of the
temporal lobe can profoundly affect the cellular structures mediating learning and memory. Ionizing radiation
has also been consistently shown to activate several neuroinflammatory signaling cascades that can impact
multiple neural processes and synaptic transmission ultimately causing disruptions in hippocampal function.
Notably, resident microglia and infiltrating monocytes, the key cellular player in neuroinflammatory processes,
have distinct embryological origins and also fulfill different functions. The mechanism/s by which activation of
the inflammatory response affect cognitive functions after brain irradiation and the specific role of different
myeloid cells remain elusive. Thus, there is a clear need to understand the mechanisms of radiation injury and
inflammation to develop strategies for preventing cognitive decline following cranial irradiation.
Recent work from our group during the previous funding period has shed light in these questions and
revealed specific problems in the cellular and molecular mechanisms underlying radiation-induced memory
deficits. Specifically our data demonstrates a direct link between CCL2/CCR2 and cognition. These results
provide a mechanistic link between peripheral innate immune system and cognition after brain irradiation. In
the current proposal we will evaluate the central hypothesis that therapeutic doses of cranial irradiation induce
infiltration of peripheral monocytes that modifies the resident inflammatory response and promotes synaptic
dysfunction and long term cognitive deficits.
Aim 1: Determine the kinetics and inflammatory phenotype of radiation-induced myeloid cell alterations
after single and hypofractionated therapeutic doses of irradiation.
Aim 2: Evaluate the role of peripheral monocyte recruitment into the brain as a mechanistic driver of
radiation-induced altered synaptic and cognitive functions.
Aim 3: Determine if temporary depletion of myeloid cells prevent the loss of synaptic function and cognition
after single and hypofractionated doses of radiation.
Very little is known in regard to the evolution of radiation induced pathophysiology in the context of
peripherally derived macrophage accumulation or inflammation, and how this relates to altered synaptic and
cognitive function. Our final therapeutic goal is to modify the cognitive changes observed after radiation injury.
项目概要
治疗性放射通常用于治疗原发性和转移性脑肿瘤,并可能导致
许多后期影响,包括进行性认知功能障碍。目前没有可用的治疗方法
甚至可以部分逆转辐射损伤后观察到的认知变化。具体而言,照射
颞叶可以深刻影响介导学习和记忆的细胞结构。电离辐射
也一直被证明可以激活几种神经炎症信号级联反应,从而影响
多种神经过程和突触传递最终导致海马功能中断。
值得注意的是,常驻小胶质细胞和浸润单核细胞是神经炎症过程中的关键细胞参与者,
具有不同的胚胎起源并履行不同的功能。激活的机制
脑照射后炎症反应影响认知功能及不同药物的具体作用
骨髓细胞仍然难以捉摸。因此,明确需要了解辐射损伤的机制和
炎症以制定预防颅脑照射后认知能力下降的策略。
我们小组在上一个资助期间的最新工作揭示了这些问题和
揭示了辐射诱发记忆的细胞和分子机制中的具体问题
赤字。具体来说,我们的数据证明了 CCL2/CCR2 与认知之间的直接联系。这些结果
提供外周先天免疫系统与脑照射后认知之间的机制联系。在
目前的提议,我们将评估治疗剂量的颅脑照射诱发的中心假设
外周单核细胞浸润,改变常驻炎症反应并促进突触
功能障碍和长期认知缺陷。
目标 1:确定辐射诱导的骨髓细胞改变的动力学和炎症表型
单次和大分割治疗剂量的照射后。
目标 2:评估外周单核细胞募集至大脑作为机械驱动因素的作用
辐射引起的突触和认知功能改变。
目标 3:确定骨髓细胞的暂时耗竭是否可以防止突触功能和认知的丧失
单次和大分割剂量的放射治疗后。
关于辐射诱发的病理生理学的演变知之甚少。
外周源性巨噬细胞积聚或炎症,以及这与突触和炎症改变的关系
认知功能。我们的最终治疗目标是改变放射损伤后观察到的认知变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanna Rosi其他文献
Susanna Rosi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanna Rosi', 18)}}的其他基金
Aging exacerbates trauma-induced immune pathways and neuronal dysfunction
衰老加剧创伤引起的免疫途径和神经元功能障碍
- 批准号:
10159815 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Aging exacerbates trauma-induced immune pathways and neuronal dysfunction
衰老加剧创伤引起的免疫途径和神经元功能障碍
- 批准号:
9924452 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Contribution of infiltrating macrophages on synaptic function after TBI
浸润性巨噬细胞对 TBI 后突触功能的贡献
- 批准号:
8828464 - 财政年份:2014
- 资助金额:
$ 38.23万 - 项目类别:
Effects of traumatic brain injury on hippocampal network activity: age difference
创伤性脑损伤对海马网络活动的影响:年龄差异
- 批准号:
8443632 - 财政年份:2013
- 资助金额:
$ 38.23万 - 项目类别:
Effects of traumatic brain injury on hippocampal network activity: age difference
创伤性脑损伤对海马网络活动的影响:年龄差异
- 批准号:
8669899 - 财政年份:2013
- 资助金额:
$ 38.23万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Astrocyte Elevated Gene-1 (AEG-1), A Novel Multifunctional Protein, In Chemotherapy-Induced Peripheral Neuropathy
星形胶质细胞升高基因 1 (AEG-1)(一种新型多功能蛋白)在化疗引起的周围神经病变中的作用
- 批准号:
10679708 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Noradrenergic gating of astrocyte calcium-mediated homeostasis in vivo
星形胶质细胞钙介导体内稳态的去甲肾上腺素能门控
- 批准号:
10679269 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
- 批准号:
10619170 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
The Enteric Glia as a Possible Target for Symptom Relief in Endometriosis
肠胶质细胞作为缓解子宫内膜异位症症状的可能目标
- 批准号:
10625609 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别: