Multimodal Imaging Biomarkers of Parkinson’s Disease
帕金森病的多模态成像生物标志物
基本信息
- 批准号:9552310
- 负责人:
- 金额:$ 40.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Amygdaloid structureAnatomyAtlasesBasal GangliaBayesian ModelingBiological MarkersBrainCharacteristicsClinicalClinical ManagementConduct Clinical TrialsCorpus striatum structureDataData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDisease MarkerDisease ProgressionDopamineDorsalEarly DiagnosisEvaluationForms ControlsFunctional Magnetic Resonance ImagingFunctional disorderFutureGlobus PallidusHippocampus (Brain)ImageInvestigationLabelLeadLimbic SystemLinkMagnetic Resonance ImagingMeasuresMediatingMediationMediator of activation proteinMethodsModelingMotorMultimodal ImagingNational Institute of Neurological Disorders and StrokeNeuronsParkinson DiseasePathway interactionsPatientsPharmaceutical PreparationsPhaseProcessPropertyRed nucleus structureReproducibilityResearchResearch DesignRestRoleScanningSecondary Parkinson DiseaseStructureSubgroupSubstantia nigra structureSymptomsTechniquesThalamic structureValidationWorkanalytical toolbasebiomarker discoverybiomarker panelcandidate markercingulate gyrusdisorder controldopaminergic neuronhigh dimensionalityimaging biomarkerimprovedin vivomultimodalityneuroimagingneuroimaging markernon-motor symptomnovelpars compactaprogramsprogression markerrelating to nervous systemvalidation studies
项目摘要
Project Summary/Abstract: There is a clear need for well-validated biomarkers for Parkinson's disease (PD)
to aid early detection, more precise diagnosis, and clinical management. Numerous candidate markers are
emerging, for example, spurred by initiatives such as the Parkinson's Disease Biomarker Program (PDBP)
launched by the National Institute of Neurological Disorders and Stroke. One promising path to biomarker
discovery involves the use of multimodal neuroimaging to reveal neuropathophysiologic characteristics of PD.
PD involves a severe loss of dopamine producing neurons, which is expected to lead to downstream changes
in brain function and structure, some of which manifest through in vivo neuroimaging (Politis, 2014). Identifying
robust neuroimaging alterations in symptomatic PD patients creates an opportunity to assess the role of such
changes for tracking disease progression and eventually to investigate whether similar changes emerge during
the prodromal period. Biomarker discovery from a massive set of multimodal neuroimaging features depends
critically on the development and application of advanced analytic techniques.
In previous research (U18 NS082143), we developed a suite of analytic tools for cross-sectional
multimodal neuroimaging data to accurately dissociate patients with mild to moderate PD from healthy control
subjects. In this highly successful discovery phase, we used large-scale magnetic resonance imaging (MRI),
resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI), and we identified three parsimonious
panels of strongly predictive multimodal imaging markers. The first panel consists of 24 functional and
structural markers (MRI, DTI, and rs-fMRI), which collectively reflect thalamic and limbic system alterations
(e.g. hippocampus, amygdala, orbitofrontal cortex, and cingulate gyrus). The second identifies 23 markers,
resulting from an analysis that includes more detailed coverage of the basal ganglia. Lastly, we identified a 15-
feature structural panel (MRI and DTI), which we expect to be less susceptible to effects from PD medications.
Long-term, each panel may offer advantages in practice. We embedded in our selection processes methods
to promote reproducibility and model parsimony, while targeting high accuracy.
In this new project, we will further evaluate the markers discovered in our previous research for
validation and possibly refinement. We also seek to understand changes in these markers in distinct sets of
patients who are on and off of their usual PD medications, to investigate the ability of these cross-sectional and
new longitudinal markers to forecast progression, and to determine associations between clinical symptoms
and the emergent imaging markers. A major advantage of this project is that we have three independent data
sets, two of which have longitudinal scans, enabling further discovery and validation. The data come from the
Parkinson's Progression Markers Intiative (PPMI) and from two studies conducted under the PDBP.
项目摘要/摘要:显然需要对帕金森氏病(PD)进行精心验证的生物标志物
帮助早期检测,更精确的诊断和临床管理。许多候选标记是
例如,诸如帕金森氏病生物标志物计划(PDBP)之类的计划刺激了新兴
由美国国家神经系统疾病和中风研究所发起。生物标志物的一条有希望的途径
发现涉及使用多模式神经影像来揭示PD的神经病理生理特征。
PD涉及多巴胺产生神经元的严重丧失,预计会导致下游变化
在大脑功能和结构中,其中一些通过体内神经影像体现出来(Politis,2014年)。识别
有症状的PD患者的强大神经成像改变创造了评估这种作用的机会
追踪疾病进展的变化,并最终研究是否在
前驱时期。从一组大量多模式神经影像特征中发现生物标志物取决于
对高级分析技术的开发和应用至关重要。
在先前的研究(U18 NS082143)中,我们开发了一套用于横截面的分析工具
多模式神经影像学数据,以准确地将轻度至中度PD患者与健康对照分解
主题。在这个非常成功的发现阶段,我们使用了大规模的磁共振成像(MRI),
静止状态功能性MRI(RS-FMRI)和扩散张量成像(DTI),我们鉴定
强烈预测性多模式成像标记的面板。第一个面板由24个功能和
结构标记(MRI,DTI和RS-FMRI),共同反映了丘脑和边缘系统的改变
(例如海马,杏仁核,眶额皮质和扣带回)。第二个标识23个标记,
由于分析包括对基底神经节的更详细的覆盖范围。最后,我们确定了15-
具有结构面板(MRI和DTI),我们希望它不太容易受到PD药物的影响。
长期,每个小组在实践中可能会带来优势。我们嵌入了选择过程方法
促进可重复性和模型模型,同时瞄准高精度。
在这个新项目中,我们将进一步评估我们先前研究中发现的标记
验证和可能的改进。我们还试图以不同的集合了解这些标记的变化
开出通常使用PD药物的患者,以调查这些横截面和
新的纵向标记以预测进展,并确定临床症状之间的关联
以及新兴的成像标记。该项目的主要优点是我们有三个独立数据
套件,其中两个具有纵向扫描,从而实现了进一步的发现和验证。数据来自
帕金森的进展标记式(PPMI)以及在PDBP下进行的两项研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F. DuBois Bowman其他文献
A joint model for longitudinal data profiles and associated event risks with application to a depression study
纵向数据概况和相关事件风险的联合模型及其应用于抑郁症研究
- DOI:
10.1111/j.1467-9876.2005.00485.x - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman;A. Manatunga - 通讯作者:
A. Manatunga
Predicting Power for Longitudinal Studies with Attrition
纵向磨损研究的预测能力
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman - 通讯作者:
F. DuBois Bowman
F. DuBois Bowman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F. DuBois Bowman', 18)}}的其他基金
Brain and Behavioral Indicators of Risk for Parkinsonism among Adolescents with Early Pesticide Exposure
早期接触农药的青少年帕金森病风险的大脑和行为指标
- 批准号:
10321251 - 财政年份:2019
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8722053 - 财政年份:2014
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8889317 - 财政年份:2014
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8473443 - 财政年份:2012
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8554396 - 财政年份:2012
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7318269 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7862581 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7648077 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Targeting the Default Mode Network: A TMS-fMRI Study
针对默认模式网络:TMS-fMRI 研究
- 批准号:
10590968 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Circuitry dynamics underlying opioid-dependence: Integrating structural, functional, and transcriptomic mechanisms
阿片类药物依赖性的电路动力学:整合结构、功能和转录组机制
- 批准号:
10509750 - 财政年份:2022
- 资助金额:
$ 40.01万 - 项目类别:
Behavior and Circuitry of Directed Orofacial Exploration
定向口面部探查的行为和电路
- 批准号:
10413915 - 财政年份:2018
- 资助金额:
$ 40.01万 - 项目类别:
Behavior and Circuitry of Directed Orofacial Exploration
定向口面部探查的行为和电路
- 批准号:
10199075 - 财政年份:2018
- 资助金额:
$ 40.01万 - 项目类别: