Development of an integrated array for simultaneous optogenetic stimulation and electrical recording to study cortical circuit function in the non-human primate brain
开发用于同步光遗传学刺激和电记录的集成阵列,以研究非人类灵长类动物大脑中的皮质电路功能
基本信息
- 批准号:9358355
- 负责人:
- 金额:$ 74.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAddressAnimalsArchitectureAreaAutistic DisorderBackBehaviorBehavioralBiological ModelsBrainBrain DiseasesCaliberCerebral cortexChronicCouplingDevelopmentDevicesElectrodesElectrophysiology (science)EngineeringEpilepsyFoundationsFunctional disorderFutureGenerationsGlassGoalsHistologicHumanHybridization ArrayIndustrializationInvestigationLasersLeadLearningLightLightingLinkMacacaMeasurableMedicalMental disordersMethodsMorphologic artifactsMusNeuroanatomyNeurologicNeuronsNeurophysiology - biologic functionNeurosciencesOpsinOpticsPatternPerceptionPhysiologicalPhysiologyPlasticizersPositioning AttributePrimatesProteinsResearchResourcesSchizophreniaSideStudy modelsSurfaceTechnologyTestingTherapeutic InterventionTimeTissuesUniversitiesUtahVisible RadiationVisual CortexWorkattenuationawakebasebiomaterial compatibilitycell typecommercializationdesignexperimental studyin vivomicrobialmicrosystemsmillisecondnervous system disorderneural circuitneurophysiologyneuroregulationnew technologynonhuman primateoptical fiberoptogeneticsphotoactivationphotonicspreventprosthesis controlprototyperelating to nervous systemspatiotemporaltool
项目摘要
Understanding the function of neural circuits in the cerebral cortex of the non-human primate (NHP), the
model system closest to human, is crucial to understanding normal cortical function and the circuit-level basis
of human brain disorders. Optogenetics has emerged as a powerful tool for studying neural circuit function, by
using light to perturb the activity of specific cell types genetically modified to express light-activated microbial
opsins, and assessing the consequences of this perturbation on network activity and behavior. While successful
in mice, it has been challenging to apply optogenetics to NHPs, largely due to the lack of multifunction
integrated probes for precision light delivery and electrophysiology across mm-to-cm volumes through the
depth of the NHP cortex. Large volume manipulations are essential in the large NHP brain in order to observe
measurable electrophysiological or behavioral effects. An interdisciplinary team of PIs proposes to develop and
test in vivo integrated penetrating arrays that allow for large-volume, spatiotemporally patterned optogenetic
modulation and electrical recording of neural circuits in the NHP brain. This project requires the coordinated
effort of 4 teams, including experts in photonic devices and µLED development for optogenetics, materials and
packaging for biocompatible devices, primate neurophysiology, and pioneers in electrode array design and
commercialization. In Aim 1 we develop the technology, and in Aim 2 we test it in vivo in the NHP visual cortex.
We will initially develop a 4x4 mm penetrating 10x10 optrode array in a format analogous to the well-
established Utah Electrical Array (UEA), with each probe serving as a waveguide allowing visible light to reach
tissue depths >1.5mm. Following initial optimization of the probe's shank diameter and tip angle to minimize
tissue damage, we will perform proof-of-concept in vivo NHP optogenetic experiments in deep cortical tissue,
using broad-area illumination of the entire array. In a second stage, we will develop light coupling via µLEDs,
which will be integrated into a single platform and tested in vivo, consisting of a µLED located over each
optical probe. Completion of stage 2 will deliver a functional multioptrode array for large-volume patterned
optogenetic stimulation. Parallel engineering efforts will add electrical recording capability, by utilizing the
engineering resources already in place for the UEA, and will generate two types of integrated arrays. The
“interleaved” array consists of an optrode array inserted through the back plane of a modified UEA into which a
grid of through-backplane holes is made via laser ablation to accommodate the optrodes. For the “hybrid” array,
each optrode shank will be coated with an isolation layer followed by a conductive layer, in order to allow
recording while preventing light attenuation and stimulation artifacts. In vivo testing will assess the recording
capabilities of both devices and subsequently the ability to perform simultaneous optical stimulation and
electrical recordings. This technology will allow for unprecedented optogenetic investigations of mm-to-cm
scale neural circuit function and dysfunction in NHPs, and for a new generation of therapeutic interventions
via cell type specific optical neural control prosthetics.
了解非人类灵长类动物 (NHP) 大脑皮层神经回路的功能
最接近人类的模型系统,对于理解正常皮质功能和电路级基础至关重要
光遗传学已成为研究神经回路功能的强大工具。
利用光扰乱经过基因改造以表达光激活微生物的特定细胞类型的活性
视蛋白,并在成功的情况下评估这种扰动对网络活动和行为的影响。
在小鼠中,将光遗传学应用于 NHP 一直具有挑战性,这主要是由于缺乏多功能
集成探针可在毫米至厘米的体积内实现精确的光传输和电生理学
为了观察 NHP 皮层的深度,大容量操作对于大 NHP 大脑至关重要。
一个由 PI 组成的跨学科团队建议开发和测量可测量的电生理或行为效应。
测试体内集成穿透阵列,可实现大体积、时空图案化的光遗传学
NHP 大脑中神经回路的调制和电记录该项目需要协调。
4 个团队的努力,包括光子器件和光遗传学、材料和 µLED 开发方面的专家
生物相容性设备的包装、灵长类动物神经生理学以及电极阵列设计和领域的先驱
在目标 1 中,我们开发了该技术,在目标 2 中,我们在 NHP 视觉皮层中进行了体内测试。
我们最初将开发一个 4x4 mm 穿透性 10x10 光极阵列,其格式类似于井-
建立了犹他电阵列(UEA),每个探头充当波导,允许可见光到达
初步优化探头柄直径和尖端角度以最小化组织深度 >1.5mm。
组织损伤,我们将在深层皮质组织中进行体内 NHP 光遗传学实验的概念验证,
在第二阶段,我们将通过 µLED 开发光耦合,
它将被集成到一个平台中并进行体内测试,由位于每个平台上的 µLED 组成
第二阶段的完成将提供用于大体积图案化的功能性多光极阵列。
光遗传学刺激将通过利用光遗传学刺激来增加电记录能力。
UEA 的工程资源已经到位,并将生成两种类型的集成阵列。
“交错”阵列由一个光极阵列组成,该光极阵列插入修改后的 UEA 的背板,其中
通过激光烧蚀形成贯通背板孔的网格以容纳光极 对于“混合”阵列,
每个光极杆将涂有隔离层,然后是导电层,以便允许
记录的同时防止光衰减和刺激伪影 体内测试将评估记录。
两种设备的功能以及随后执行同时光刺激和
这项技术将允许对毫米到厘米进行前所未有的光遗传学研究。
衡量 NHP 的神经回路功能和功能障碍,以及新一代的治疗干预措施
通过细胞类型特定的光学神经控制假体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandra Angelucci其他文献
Alessandra Angelucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandra Angelucci', 18)}}的其他基金
High density chronic optogenetic interface for primate brains
灵长类大脑的高密度慢性光遗传学接口
- 批准号:
10706899 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别:
Connectivity and function of inhibitory neurons in the primate visual cortex
灵长类视觉皮层抑制性神经元的连接和功能
- 批准号:
10434932 - 财政年份:2020
- 资助金额:
$ 74.97万 - 项目类别:
Connectivity and function of inhibitory neurons in the primate visual cortex
灵长类视觉皮层抑制性神经元的连接和功能
- 批准号:
10745862 - 财政年份:2020
- 资助金额:
$ 74.97万 - 项目类别:
Connectivity and function of inhibitory neurons in the primate visual cortex
灵长类视觉皮层抑制性神经元的连接和功能
- 批准号:
10256055 - 财政年份:2020
- 资助金额:
$ 74.97万 - 项目类别:
Connectivity and function of inhibitory neurons in the primate visual cortex
灵长类视觉皮层抑制性神经元的连接和功能
- 批准号:
10662206 - 财政年份:2020
- 资助金额:
$ 74.97万 - 项目类别:
Anatomical and functional organization of inter-areal feedback circuits in the visual cortex, and their impact on neuronal responses
视觉皮层区域间反馈回路的解剖和功能组织及其对神经元反应的影响
- 批准号:
10408773 - 财政年份:2016
- 资助金额:
$ 74.97万 - 项目类别:
Medical Student Research Program (MSRP) in Eye Health and Disease
眼健康和疾病医学生研究计划 (MSRP)
- 批准号:
10411366 - 财政年份:2016
- 资助金额:
$ 74.97万 - 项目类别:
Development of an integrated array for simultaneous optogenetic stimulation and electrical recording to study cortical circuit function in the non-human primate brain
开发用于同时光遗传学刺激和电记录的集成阵列,以研究非人类灵长类动物大脑中的皮质电路功能
- 批准号:
9547551 - 财政年份:2016
- 资助金额:
$ 74.97万 - 项目类别:
Anatomical and functional organization of inter-areal feedback circuits in the visual cortex, and their impact on neuronal responses
视觉皮层区域间反馈回路的解剖和功能组织及其对神经元反应的影响
- 批准号:
9884765 - 财政年份:2016
- 资助金额:
$ 74.97万 - 项目类别:
Anatomical and functional organization of inter-areal feedback circuits in the visual cortex, and their impact on neuronal responses
视觉皮层区域间反馈回路的解剖和功能组织及其对神经元反应的影响
- 批准号:
10636827 - 财政年份:2016
- 资助金额:
$ 74.97万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 74.97万 - 项目类别: