PTH Effects of Craniofacial Allografts
颅面同种异体移植物的 PTH 效应
基本信息
- 批准号:9281787
- 负责人:
- 金额:$ 54.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintANGPT1 geneAddressAdjuvant TherapyAdoptedAffectAllograftingAngiogenesis InhibitionAngiopoietin-2Animal ModelAppearanceAutologousAutologous TransplantationBiocompatible MaterialsBiomechanicsBlood VesselsBone TissueBone TransplantationCalvariaCellsCephalicChronicCicatrixClinicalCollaborationsCollagenCollagen Type ICongenital AbnormalityCoupledCromoglicic AcidCustomDataDefectDiseaseFibrosisForeign BodiesForeign-Body ReactionForteoFractureFundingHeadHistologyIndividualInflammationInflammatoryInformation TechnologyLaser Scanning MicroscopyMYH11 geneMaintenanceMalignant NeoplasmsMandibleMethodsMiniature SwineModelingMusMuscle CellsMusculoskeletalNatural regenerationNatureOperative Surgical ProceduresOral cavityOsteoblastsOsteogenesisOsteoporosisOutcome MeasurePTH genePatientsPharmaceutical PreparationsPharmacologyPrintingPropertyPublishingRadiology SpecialtyRecombinantsReconstructive Surgical ProceduresRegulationResearchRoleSignal TransductionSmooth Muscle MyocytesTestingTissue EngineeringTissuesTranslatingTraumaTraumatic injuryVascular Smooth Muscleallogenic bone transplantationangiogenesisbasebonebone healingbone losscalcium phosphatecancer surgeryclinically relevantcraniofacialcraniofacial complexcraniomaxillofacialhealingin vivo Modelinduced pluripotent stem cellinnovative technologiesloss of functionmast cellmouse modelnovelosteogenicpre-clinicalpreventprimary outcomepublic health relevancereconstructionregenerativerepairedresponsescaffoldsecondary outcomespatial relationshipsuccesstechnological innovationtheoriestreatment groupvasculogenesis
项目摘要
DESCRIPTION (provided by applicant): While bone tissues have regenerative capabilities that enable self-repair of fractures, in extreme cases complete critical defect healing will not occur. Such bone defects in the craniofacial complex are often a result of birth defects, trauma or cancer surgery. Unfortunately, the long- term results of craniomaxillofacial reconstructions are very poor due to the overwhelming tissue fibrosis and scarring that occurs following surgery. This inflammatory-foreign body response to the grafted biomaterial remains one of the great challenges in treating these patients. To address this, our multi-institutional investigative team has sustained a long-term collaboration that produced several advances in this field including extraordinary success in treating several patients with facture non-unions non-surgically with recombinant parathyroid hormone (rPTH, teriparatide). To elucidate the mechanisms responsible for these rPTH effects on bone healing, and translate it to a Musculoskeletal Tissue Engineering (MTE) solution for critical bone defects, we published several preclinical discoveries. The most relevant to this renewal application are: 1) angiopoietins (Ang) 1 & Ang-2, which regulate large vessel vasculogenesis, are reciprocally regulated by rPTH therapy to inhibit large blood vessels proximal to the allograft; and 2) rPTH also inhibits the accumulation of pro-fibrotic mast cells adjacent to the large vessels. Based on this we hypothesize that rPTH therapy facilitates critical defect healing by: 1) its well-known anabolic effects on osteoblasts (Col1(2.3)+) to increase bone healing beyond the limits of a critical defect, 2) osteoblast-induced
small vessel angiogenesis at the healing front, and 3) inhibitory effects on large vessel vasculogenesis, mast cell accumulation and fibrosis. Technologically, we: 1) developed a chronic cranial defect window chamber model for in vivo multiphoton laser scanning microscopy (MPLSM); 2) established a clinically relevant model of critical defect healing in the minipig mandible: 3) developed custom 3D-printed bone scaffolds to replace massive allografts; and 4) developed autologous osteogenic-iPS cells (iMSC) with enhanced bone forming properties and reduced transformation potential. Here we propose to use these innovative technologies to: 1) test our hypotheses on the nature of critical defects in craniofacial bones, 2) formally elucidate the mechanism by which rPTH therapy inhibits inflammation and fibrosis to allow for critical craniomaxillofacial bone defect healing, and 3) provide a translational MTE solution for this challenging clinical problem in a large animal model. Given the high clinical relevance of these proofs of concept, the potential impact of success could be huge for this significant problem.
描述(由申请人提供):虽然骨组织具有能够自我修复骨折的再生能力,但在极端情况下,颅面复合体中的这种骨缺陷通常是由出生缺陷、创伤或癌症造成的。不幸的是,由于手术后发生的大量组织纤维化和疤痕,颅颌面重建的长期效果仍然很差。为了解决这些患者面临的巨大挑战,我们的多机构研究团队进行了长期合作,在该领域取得了多项进展,包括通过非手术重组治疗几名骨折不愈合患者。甲状旁腺激素(rPTH、特立帕肽)旨在阐明 rPTH 对骨骼愈合的影响机制,并将其转化为针对关键骨骼的肌肉骨骼组织工程 (MTE) 解决方案。缺陷,我们发表了几项与此更新应用最相关的临床前发现:1)调节大血管血管生成的血管生成素(Ang)1和Ang-2受到rPTH疗法的相互调节,以抑制同种异体移植物附近的大血管。 ; 2) rPTH 还可以抑制大血管附近促纤维化肥大细胞的积累,基于此,我们发现 rPTH 治疗有助于关键缺损的愈合。通过:1) 众所周知的对成骨细胞的合成代谢作用 (Col1(2.3)+),可增加骨愈合,使其超出严重缺损的限度,2) 成骨细胞诱导
愈合前沿的小血管血管生成,以及 3) 对大血管血管生成、肥大细胞积累和纤维化的抑制作用 在技术上,我们:1) 开发了用于体内多光子激光扫描显微镜 (MPLSM) 的慢性颅骨缺损窗室模型 2; ) 建立了小型猪下颌骨关键缺损愈合的临床相关模型:3) 开发定制 3D 打印骨支架来替代大量同种异体移植物; 4)开发了具有增强的骨形成特性和降低的转化潜力的自体成骨-iPS细胞(iMSC),在这里我们建议使用这些创新技术来:1)测试我们关于颅面骨关键缺陷性质的假设,2)正式阐明。 rPTH 疗法抑制炎症和纤维化以实现关键颅颌面骨缺损愈合的机制,3) 为大型动物模型中这一具有挑战性的临床问题提供转化 MTE 解决方案。这些概念验证具有高度的临床相关性,成功的潜在影响对于这个重大问题可能是巨大的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAN GAZIT其他文献
DAN GAZIT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAN GAZIT', 18)}}的其他基金
Ultrasound-guided DNA delivery for regenerative medicine
用于再生医学的超声引导 DNA 递送
- 批准号:
10113360 - 财政年份:2018
- 资助金额:
$ 54.87万 - 项目类别:
Diagnosis of Discogenic Low Back Pain Using pH Level-Dependent MRI
使用 pH 值依赖的 MRI 诊断椎间盘源性腰痛
- 批准号:
8722766 - 财政年份:2014
- 资助金额:
$ 54.87万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10302173 - 财政年份:2014
- 资助金额:
$ 54.87万 - 项目类别:
相似海外基金
ANG1-7 as an intervention for Alzheimer's Disease.
ANG1-7 作为阿尔茨海默病的干预措施。
- 批准号:
10592577 - 财政年份:2023
- 资助金额:
$ 54.87万 - 项目类别:
Single cell transcriptome profiling of aqueous humor outflow development for discovery of novel childhood glaucoma genes
房水流出发育的单细胞转录组分析以发现新的儿童青光眼基因
- 批准号:
10510279 - 财政年份:2022
- 资助金额:
$ 54.87万 - 项目类别:
Single cell transcriptome profiling of aqueous humor outflow development for discovery of novel childhood glaucoma genes
房水流出发育的单细胞转录组分析以发现新的儿童青光眼基因
- 批准号:
10682543 - 财政年份:2022
- 资助金额:
$ 54.87万 - 项目类别:
The role of Angiopoietin-TEK signaling in polypoidal choroidal vasculopathy
血管生成素-TEK 信号在息肉状脉络膜血管病变中的作用
- 批准号:
10183715 - 财政年份:2021
- 资助金额:
$ 54.87万 - 项目类别: