Role of protein-S-glutathionylation in endothelial dysfunction and atherosclerosis
蛋白质-S-谷胱甘肽化在内皮功能障碍和动脉粥样硬化中的作用
基本信息
- 批准号:9544365
- 负责人:
- 金额:$ 41.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdenovirus VectorAdenovirusesAntioxidantsApolipoprotein EApplications GrantsAreaArterial Fatty StreakAtherosclerosisAttenuatedBeta CaroteneBinding ProteinsBiochemicalBiological AssayBiological Response Modifier TherapyBiotinBlood VesselsCardiovascular DiseasesCardiovascular systemCarotid ArteriesCause of DeathCell physiologyCysteineCytoskeletonDataDevelopmentDiabetes MellitusDietDown-RegulationDrug Delivery SystemsEncapsulatedEndothelial CellsEndotheliumEnzymesExcisionFree RadicalsFunctional disorderGene ProteinsGenesGeneticGoalsGrx1 proteinHomeostasisHumanHyperlipidemiaImpairmentInflammationInjuryKnockout MiceLeadLinkLipidsLiposomesMediatingMetabolicMetabolic DiseasesMetabolic stressModelingModificationMorbidity - disease rateMouse StrainsMusNatural regenerationNon-Insulin-Dependent Diabetes MellitusOxidantsOxidation-ReductionOxidative StressPathogenesisPatientsPermeabilityPharmacologyPhenotypePost-Translational Protein ProcessingPredispositionProcessProductionProtein SProteinsProteomicsReactive Oxygen SpeciesRecombinant ProteinsRegulationRegulatory ElementResearch PersonnelResistanceRisk FactorsRoleSignal PathwaySignal TransductionSignaling ProteinSmall Interfering RNASterolsSupplementationTechniquesTestingTherapeuticTherapeutic AgentsTherapeutic EffectTransgenic MiceTransgenic OrganismsUp-RegulationVascular DiseasesVascular Endothelial CellVitamin AVitamin Eantibody conjugatecardiovascular risk factorcombatdiabetic patientendothelial dysfunctionimprovedin vitro testingin vivomortalitymouse modelmutantnovelnovel therapeuticsoverexpressionprospectiveprotective effectprotein functionrho GTP-Binding Proteinstargeted deliverytargeted treatmentvirtual
项目摘要
Project Abstract
Vascular oxidative stress is strongly implicated in the pathogenesis of virtually all primary risk factors for
cardiovascular diseases (CVD), a leading cause of death globally. Classic antioxidants (β-carotene, Vitamin A
and E) aimed at scavenging the short-lived free radicals have limited benefits in patients with CVD. Development
of different therapeutic approaches combating vascular oxidative stress appears critical. Protein S-
glutathionylation (Pr-SSG), the prevalent form of oxidant-induced reversible post-translational modification,
recently emerged as an important redox regulatory mechanism in CVD. We found that in endothelial cells (ECs)
isolated from patients with type 2 diabetes mellitus, the level of Pr-SSG was significantly elevated. This important
finding is further confirmed in a hyperlipidemic mouse model showing markedly increased Pr-SSG concomitant
with a down-regulation of Glrx-1, a specific de-glutathionylation enzyme, in aortic atherosclerotic lesions,
particularly in ECs. Transgenic overexpression of Glrx-1 in ApoE-/- mouse strain protects against diet-induced
aortic endothelial hyper-permeability and attenuates atherosclerosis (AS) development. These exciting
preliminary results lead to a central hypothesis of this grant proposal that EC Glrx-1 has a protective role in
metabolic stress-induced EC dysfunction and AS. Specific Aim#1 will test in vivo the hypothesis that EC-specific
up-regulation of Glrx-1 will attenuate AS progression by improving EC dysfunction caused by metabolic
abnormalities using EC specific Glrx-1 transgenic mice with ApoE-/- background. Our redox proteomic and
biochemical studies in metabolically stressed ECs identify Rac1 as a specific target of Glrx-1 and demonstrate
inhibitory effect of Glrx-1 on proteolytic activation of sterol regulatory element binding proteins (SREBPs), the
central players in lipid homeostasis and EC dysfunction. Therefore, specific Aim#2 will test in vitro the novel
hypothesis that Glrx-1 improves EC function through redox regulation of Rac1/SREBP signaling, employing
comprehensive approaches including primary ECs from Glrx-1 TG and KO mice, pharmacological and genetic
means (siRNA and adenovirus encoding Rac1 wild type and redox-resistant mutants), and redox biochemical
techniques (Biotin-switch assay and immunodetection of Pr-SSG). Specific Aim#3 will test in vivo the hypothesis
that supplementation of vascular ECs with Glrx-1 gene and/or recombinant protein can reverse vascular
dysfunction and retard AS employing endothelium-targeted liposomal drug delivery system. We believe that the
proposed studies will provide novel information about how Glrx-1 and glutathionylation of Rac1 are involved in
EC dysfunction and AS complicated in metabolic disorders, and will seek to establish Glrx-1 as a prospective
therapeutic agent for vascular injury in the setting of diabetes.
项目摘要
血管氧化应激与几乎所有主要危险因素的发病机制密切相关
心血管疾病 (CVD),全球主要死亡原因 经典抗氧化剂(β-胡萝卜素、维生素 A)。
E) 旨在清除短命自由基的方法对 CVD 患者的益处有限。
对抗血管氧化应激的不同治疗方法似乎至关重要。
谷胱甘肽化 (Pr-SSG),氧化剂诱导的可逆翻译后修饰的普遍形式,
最近,我们在内皮细胞(EC)中发现了一种重要的氧化还原调节机制。
从 2 型糖尿病患者中分离出来的 Pr-SSG 水平显着升高,这一点很重要。
这一发现在高脂血症小鼠模型中得到进一步证实,该模型显示 Pr-SSG 伴随显着增加
在主动脉粥样硬化病变中,Glrx-1(一种特定的去谷胱甘肽酶)下调,
特别是在 EC 中,ApoE-/- 小鼠品系中 Glrx-1 的转基因过度表达可以防止饮食诱导的影响。
主动脉内皮细胞渗透性过高并减弱动脉粥样硬化 (AS) 的发展。
初步结果得出了该拨款提案的一个中心假设,即 EC Glrx-1 在以下方面具有保护作用:
代谢应激诱导的 EC 功能障碍和 AS 具体目标#1 将在体内测试 EC 特异性的假设。
Glrx-1 的上调将通过改善代谢引起的 EC 功能障碍来减轻 AS 进展
使用具有 ApoE-/- 背景的 EC 特异性 Glrx-1 转基因小鼠的异常。
代谢应激 EC 中的生化研究将 Rac1 确定为 Glrx-1 的特定靶标,并证明
Glrx-1 对甾醇调节元件结合蛋白 (SREBP) 的蛋白水解激活的抑制作用,
因此,特定的 Aim#2 将在体外测试该新型药物。
假设 Glrx-1 通过 Rac1/SREBP 信号传导的氧化还原调节改善 EC 功能,采用
综合方法,包括来自 Glrx-1 TG 和 KO 小鼠的原代 EC、药理学和遗传学
手段(编码 Rac1 野生型和氧化还原抗性突变体的 siRNA 和腺病毒)和氧化还原生化
技术(生物素开关测定和 Pr-SSG 免疫检测)将在体内测试该假设。
补充血管内皮细胞Glrx-1基因和/或重组蛋白可以逆转血管内皮细胞
我们认为,采用内皮靶向脂质体药物递送系统可以改善功能障碍并延缓 AS。
拟议的研究将提供有关 Glrx-1 和 Rac1 谷胱甘肽化如何参与的新信息
EC功能障碍和AS在代谢紊乱中复杂化,并将寻求将Glrx-1建立为前瞻性药物
糖尿病血管损伤的治疗剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JINGYAN HAN其他文献
JINGYAN HAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JINGYAN HAN', 18)}}的其他基金
Role of protein-S-glutathionylation in endothelial dysfunction and atherosclerosis
蛋白质-S-谷胱甘肽化在内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
10331013 - 财政年份:2020
- 资助金额:
$ 41.15万 - 项目类别:
Role of protein-S-glutathionylation in endothelial dysfunction and atherosclerosis
蛋白质-S-谷胱甘肽化在内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
9883986 - 财政年份:2020
- 资助金额:
$ 41.15万 - 项目类别:
Role of protein-S-glutathionylation in endothelial dysfunction and atherosclerosis
蛋白质-S-谷胱甘肽化在内皮功能障碍和动脉粥样硬化中的作用
- 批准号:
10551314 - 财政年份:2020
- 资助金额:
$ 41.15万 - 项目类别:
Protein S-glutathionylation and vascular dysfunction with aging
衰老过程中蛋白质 S-谷胱甘肽化和血管功能障碍
- 批准号:
9751680 - 财政年份:2018
- 资助金额:
$ 41.15万 - 项目类别:
相似国自然基金
基于sIgA的V(D)J结构多样性探索腺病毒载体鼻喷新冠奥密克戎疫苗诱导的呼吸道粘膜免疫原性特征
- 批准号:82302607
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型腺病毒载体疫苗长效免疫机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
腺病毒载体新冠疫苗与灭活新冠疫苗诱导的免疫应答特征及序贯免疫策略研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于肠道腺病毒载体平台COVID-19粘膜疫苗的设计与筛选
- 批准号:82161138001
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:国际(地区)合作与交流项目
纳米蛋白冠突破腺病毒载体疫苗预存免疫效应研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Healing of Segmental Defects of Bone by Gene Transfer
基因转移修复节段性骨缺损
- 批准号:
8693923 - 财政年份:2003
- 资助金额:
$ 41.15万 - 项目类别:
Healing of Segmental Defects of Bone by Gene Transfer
基因转移修复节段性骨缺损
- 批准号:
8301760 - 财政年份:2003
- 资助金额:
$ 41.15万 - 项目类别:
Healing of Segmental Defects of Bone by Gene Transfer
基因转移修复节段性骨缺损
- 批准号:
8146039 - 财政年份:2003
- 资助金额:
$ 41.15万 - 项目类别:
Healing of Segmental Defects of Bone by Gene Transfer
基因转移修复节段性骨缺损
- 批准号:
7986758 - 财政年份:2003
- 资助金额:
$ 41.15万 - 项目类别:
Healing of Segmental Defects of Bone by Gene Transfer
基因转移修复节段性骨缺损
- 批准号:
8538746 - 财政年份:2003
- 资助金额:
$ 41.15万 - 项目类别: