Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
基本信息
- 批准号:9195756
- 负责人:
- 金额:$ 36.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAutistic DisorderAutoreceptorsBiological ModelsBipolar DisorderCalciumChemosensitizationComplexDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EngineeringEnsureEpilepsyEtiologyExtracellular DomainFMR1FamilyFoundationsFragile X SyndromeFunctional disorderGenesGeneticGenetic ScreeningGlutamate ReceptorGoalsGrowthHealthHomeostasisHumanImageImpairmentIntegral Membrane ProteinIntellectual functioning disabilityInvertebratesKainic Acid ReceptorsKnowledgeLeadLinkMental disordersMicroscopyMolecularMuscleNervous System PhysiologyNervous system structureNeuromuscular JunctionNeuronsNeurophysiology - biologic functionNeurotransmitter ReceptorOrganismOutcomePharmacologyPhysiologicalPlayPresynaptic TerminalsProcessPropertyProteinsReceptor SignalingResolutionRoleSchizophreniaSignal TransductionStructureSusceptibility GeneSynapsesSynaptic TransmissionSynaptic plasticitySystemTimeTranscriptWorkaging brainalpha Bungarotoxinbaseexperienceexperimental studyflexibilitygenetic analysisgenetic approachgenetic manipulationimaging approachinnovationkainatemutantnervous system disorderneural circuitneuropsychiatric disorderneuropsychiatrynovelpostsynapticpresynapticpublic health relevancereceptorreceptor functionrelating to nervous systemresponsescreeningsensorsynaptic functiontherapeutic targettrafficking
项目摘要
DESCRIPTION (provided by applicant): Nervous systems from invertebrates to humans have shown remarkably resilient and adaptive abilities to maintain stable functionality despite challenges that may otherwise lead to suboptimal or uncontrolled activity. In each of these systems, perturbations to synaptic activity initially lead to corresponding alterations in synaptic
strength. However, given sufficient time, nervous systems in these organisms adapt by modulating presynaptic release or postsynaptic neurotransmitter receptors to re-target previous levels of synaptic strength. This process, termed homeostatic synaptic plasticity, is thought to enable stable, yet flexible, synaptic activity and to play key roles in tuning neural function in health and disease. Yet there is a major gap in our knowledge of the molecular and cellular mechanisms that endow synapses with these extraordinary abilities. The long term goal of this proposal is to identify the genes and elucidate the mechanisms that achieve and maintain the homeostatic control of synaptic strength. To understand the principles governing homeostatic synaptic signaling, we will utilize the Drosophila neuromuscular junction, which has been established as a powerful genetic system to study this process. This proposal will use a combination of genetic analysis, electrophysiology, and imaging approaches to investigate the homeostatic mechanisms that enhance presynaptic release in response to a perturbation to postsynaptic neurotransmitter receptor function. In particular, three genes encoding neuronal transmembrane proteins have been identified that appear to function together in the presynaptic terminal to promote the calcium-dependent, homeostatic potentiation of synaptic transmission. Interestingly, these genes have been associated with epilepsy, schizophrenia, and bipolar disorder. The proposed experiments will first characterize these molecules in synaptic function and homeostatic plasticity. Confocal and super-resolution microscopy will then be utilized to reveal the subsynaptic localization and cellular activities of these proteins. Finally, complementary forward genetic screens are proposed to identify new genes that orchestrate homeostatic synaptic plasticity. Together, this work is expected to reveal new homeostatic genes and mechanisms that control the adaptive modulation of synaptic strength and provide a foundation from which to understand how transcellular homeostatic signaling systems more generally are established in the nervous system.
描述(由申请人提供):从无脊椎动物到人类的神经系统都表现出弹性和适应能力,尽管存在可能导致次优或不受控制的活动的挑战,但在这些系统中,对突触活动的扰动最初会导致相应的改变。在突触中
然而,如果有足够的时间,这些生物体中的神经系统会通过调节突触前释放或突触后神经递质受体来重新定位以前的突触强度水平,这一过程被称为稳态突触可塑性,被认为可以实现稳定而灵活的突触。然而,从长远来看,我们对赋予突触这些非凡能力的分子和细胞机制的了解还存在重大差距。该提案的目标是识别基因并阐明实现和维持突触强度稳态控制的机制。为了了解控制稳态突触信号传导的原理,我们将利用果蝇神经肌肉接头,它已被确立为强大的遗传系统。该提案将结合遗传分析、电生理学和成像方法来研究增强突触前释放以应对突触后扰动的稳态机制。特别是,已鉴定出编码神经元跨膜蛋白的三个基因,它们似乎在突触前末端一起发挥作用,以促进突触传递和双相情感障碍的钙依赖性稳态增强。然后将利用共焦和超分辨率显微镜来揭示突触功能和稳态可塑性。最后,提出了互补的前向遗传筛选来识别协调稳态突触可塑性的新基因,这项工作有望揭示控制突触强度和适应性调节的新稳态基因和机制。为理解神经系统中更普遍的跨细胞稳态信号系统如何建立提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 36.09万 - 项目类别:
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10335181 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
相似国自然基金
利用CHD8基因突变猴研究自闭症
- 批准号:82371178
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
菌源抗炎因子及神经活性物质调控自闭症谱系障碍的机制研究
- 批准号:32300094
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PV中间神经元中Cul3调节自闭症样行为的机制研究
- 批准号:32300817
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海马DG脑区PV抑制性中间神经元参与认知灵活性调控的机制及其失调与自闭症样行为的关系
- 批准号:82301727
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多中心一致性表示学习的自闭症预测研究
- 批准号:62376022
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Vulnerability for Self-Injurious Behavior: Neurobiological Mechanisms
自残行为的脆弱性:神经生物学机制
- 批准号:
7485861 - 财政年份:2008
- 资助金额:
$ 36.09万 - 项目类别:
Vulnerability for Self-Injurious Behavior: Neurobiological Mechanisms
自残行为的脆弱性:神经生物学机制
- 批准号:
7673624 - 财政年份:2008
- 资助金额:
$ 36.09万 - 项目类别:
FLUOXETINE vs. PLACEBO IN CHILD/ADOLESCENT AUTISTIC DISORDER
氟西汀与安慰剂治疗儿童/青少年自闭症
- 批准号:
7560787 - 财政年份:2007
- 资助金额:
$ 36.09万 - 项目类别: