Beta-lactamase fluorescent probes for bacterial detection
用于细菌检测的 β-内酰胺酶荧光探针
基本信息
- 批准号:9309417
- 负责人:
- 金额:$ 58.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-10 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:Acid Fast Bacillae Staining MethodAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacillus (bacterium)BacteriaBacterial InfectionsBiologicalBiological AssayBiological MarkersCarbapenemsCephalosporinsCessation of lifeChemistryClinicalClinical MicrobiologyComplexComputer SimulationDangerousnessDetectionDevelopmentDiagnostic ProcedureDiagnostic testsDiseaseDrug resistanceEnterobacteriaceaeEnzymesEscherichia coliFluorescenceFluorescent ProbesGoalsGrowthHealth Care CostsHealth ProfessionalHumanHydrolaseIn VitroIndividualInfectionKlebsiella pneumonia bacteriumLactamsLeftMethodsMolecular ProbesMonobactamsMycobacterium tuberculosisOrganismOutcomes ResearchPathogenicityPatientsPopulationPreventionPrevention strategyProductionPublic HealthRecording of previous eventsReportingResearchResearch PersonnelResistanceResourcesSamplingSeriesSignal TransductionSpecificitySputumTestingTimeTuberculosisUnited StatesVirus DiseasesWorkantimicrobial drugassay developmentbeta-Lactam Resistancebeta-Lactamasebeta-Lactamscarbapenem-resistant Enterobacteriaceaecarbapenemasechemical synthesiscostcost effectivedesigneffective therapyhealthcare communityimprovedkillingsmembernovelpathogenpathogenic bacteriapressurepreventrapid detectionrapid techniqueresistant strainrespiratorystereochemistrytransmission processtreatment strategy
项目摘要
Project Summary
In September 2014, President Barack Obama signed an executive order directing federal resources to improve
detection and prevention of antibiotic resistance, with a goal of developing a diagnostic test by 2020 that can
distinguish between bacterial and viral infections in at least 20 min. The long-term goal of this research is to
provide a novel platform solution for rapid, sensitive and specific detection of pathogenic bacterial infections
through development of fluorescent probes specific to individual β-lactamases expressed in the bacteria.
β-Lactamases are a class of bacterial hydrolases destroying β-lactam antibiotics and rendering antibiotics
resistance in bacterial pathogens. Today many patients with suspected infections are administered antibiotics
(most frequently β-lactams) empirically without prior proper identification of the causative agent, resulting in
antibiotics overuse and overspread of antimicrobial resistance, with >500,000 deaths in the world annually
attributable to these infections.
This proposal will focus on two deadly bacteria: Mycobacterium tuberculosis (Mtb) and carbapenem-resistant
Enterobacteriaceae (CRE). Tuberculosis represents one of the most dangerous respiratory pathogens in the
history of mankind, killing over one million people each year and infecting one third of the world's population.
Tubercle bacilli express BlaC, an Ambler class A β-lactamase, so Mtb has the intrinsic resistance to β-lactam
antibiotics. Accumulating results including those from us have supported the use of BlaC as the biomarker for
Mtb detection.
Broad-spectrum carbapenem agents are frequently the last option for effective therapy of infections with
antimicrobial resistant organisms, but the emergence of carbapenem-resistant Enterobacteriaceae (CRE) over
the past decade has left clinicians with few treatment options. CRE is frequently due to the production of
carbapenemase enzymes that efficiently hydrolyze carbapenems and other β-lactam antibiotics.
This project will explore novel double-quenching, dual targeting probe design strategy to develop BlaC-specific
substrate probes for rapid, highly sensitive Mtb detection (Aim #1) and carbapenemase-specific substrate
probes for rapid, highly sensitive CRE detection (Aim #2). These new probes will be evaluated with clinical
patient samples.
The expected outcome of this research is that a series of novel fluorescent probes will be discovered as a
novel assay platform to enable rapid, sensitive and specific detection of Mtb and CRE. We envision that these
assays could reduce unnecessary healthcare costs associated with treatment of bacterial infection and prevent
further expansion of existing drug-resistant strains.
项目概要
2014 年 9 月,巴拉克·奥巴马总统签署了一项行政命令,指示联邦资源改善
检测和预防抗生素耐药性,目标是到 2020 年开发出一种诊断测试,可以
至少 20 分钟内区分细菌和病毒感染 这项研究的长期目标是
为快速、灵敏、特异的病原菌感染检测提供新颖的平台解决方案
通过开发针对细菌中表达的单个β-内酰胺酶的特异性荧光探针。
β-内酰胺酶是一类细菌水解酶,可破坏β-内酰胺抗生素并产生抗生素
如今,许多疑似感染的患者都接受了抗生素治疗。
(最常见的是β-内酰胺)凭经验而没有事先正确识别病原体,导致
抗生素的过度使用和抗菌素耐药性的蔓延,每年导致全球超过 50 万人死亡
归因于这些感染。
该提案将重点关注两种致命细菌:结核分枝杆菌 (Mtb) 和碳青霉烯类抗药性细菌
肠杆菌科 (CRE) 是最危险的呼吸道病原体之一。
人类历史上每年造成超过一百万人死亡并感染世界三分之一的人口。
结核杆菌表达BlaC,一种Ambler A类β-内酰胺酶,因此Mtb对β-内酰胺具有内在耐药性
包括我们在内的累积结果支持使用 BlaC 作为抗生素的生物标志物。
结核分枝杆菌检测。
广谱碳青霉烯类药物通常是有效治疗感染的最后选择
抗菌药物耐药微生物,但碳青霉烯类耐药肠杆菌科细菌 (CRE) 的出现超过
过去十年,CRE 的治疗选择很少,这通常是由于生产的原因。
碳青霉烯酶可有效水解碳青霉烯类和其他 β-内酰胺抗生素。
该项目将探索新颖的双淬灭、双靶向探针设计策略,以开发 BlaC 特异性
用于快速、高灵敏度 Mtb 检测(目标 #1)和碳青霉烯酶特异性底物的底物探针
用于快速、高灵敏度 CRE 检测的探针(目标#2)将通过临床评估这些新探针。
患者样本。
这项研究的预期结果是,将发现一系列新型荧光探针作为
新型检测平台可实现 Mtb 和 CRE 的快速、灵敏和特异性检测。
检测可以减少与治疗细菌感染相关的不必要的医疗费用并预防
进一步扩大现有的耐药菌株。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianghong Rao其他文献
Jianghong Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianghong Rao', 18)}}的其他基金
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
- 批准号:
10708827 - 财政年份:2022
- 资助金额:
$ 58.42万 - 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
- 批准号:
10538071 - 财政年份:2022
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10004020 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10231101 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10900851 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10413265 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10472523 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Copper-depleting nanotheranostics for treating triple negative breast cancer
用于治疗三阴性乳腺癌的铜消耗纳米治疗剂
- 批准号:
10684918 - 财政年份:2019
- 资助金额:
$ 58.42万 - 项目类别:
Nanoparticle-Based Triple Modality Imaging and Photothermal Therapy of Brain Tumors
基于纳米颗粒的脑肿瘤三模态成像和光热疗法
- 批准号:
10000853 - 财政年份:2016
- 资助金额:
$ 58.42万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
- 批准号:
10586250 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别: