CRCN: Dissecting Neural Circuits for Acute Pain
CRCN:剖析急性疼痛的神经回路
基本信息
- 批准号:9313960
- 负责人:
- 金额:$ 37.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAcute PainAdverse effectsAffectiveAnalgesicsAnteriorAreaBase of the BrainBehaviorBiological AssayBrainBrain regionCellsClinical TreatmentCodeComb animal structureDataData AnalysesDeep Brain StimulationDetectionElectrophysiology (science)EngineeringGoalsHealthHumanIndividualInstructionLifeMethodsModelingMolecularMotivationNeuraxisNeuronsOutcomePainPain managementPatientsPatternPeripheralPharmacologyPhysiologyPlayPopulationPrefrontal CortexRattusReportingResearchRodent ModelRoleSensorySignal TransductionSomatosensory CortexSpinalStatistical MethodsStimulusSynapsesSystemTechniquesTestingTherapeuticTimeUse EffectivenessWorkarmbasebrain machine interfacecentral paincingulate cortexclinical Diagnosiscomputational neurosciencedesignexperiencehuman imagingimaging studyneural circuitneuroimagingneuromechanismneuroregulationnext generationnoveloptogeneticspain behaviorpain symptomprototyperelating to nervous systemtemporal measurementtooltranslational impact
项目摘要
Pain is a multidimensional experience that includes sensory and affective components. Human imaging
studies have identified patterns of activities within key cortical areas that can encode different pain
experiences, but it remains unclear how pain can also be encoded reliably at the level of individual neurons
or populations of neurons. The primary somatosensory cortex (S1) has been thought to be important in the
sensory-discriminative aspect of the pain, yet the anterior cingulate cortex (ACC) is known to play a crucial
role in the affective-motivational experience of pain. However, imaging studies cannot provide causal
relationship between circuits and behavior and are further limited by poor temporal resolution. Therefore, a
complete understanding of neural codes for acute pain in physiology remains missing. Neuromodulation is a
potential option for pain treatment; but current techniques such as deep brain stimulation (DBS) lack optimal
targets and require constant stimulation with undesired side effects. We will use a rat model to uncover pain
mechanisms of key central neural circuits and develop a demand-based brain-machine interface (BMI) that
integrates timely detection of the pain signal and precise temporal analgesic control. In Aim 1, we will identify
cortical circuitry for encoding acute pain. We will collect simultaneous S1 and ACC ensemble recordings
from freely behaving rats and characterize their firing patterns at both single cell and population levels. In
Aim 2, we will determine how the central pain circuitry is altered by central vs. peripheral analgesic strategy
using optogenetic and pharmacological approaches. In Aim 3, we will develop reliable computational
strategies to decode acute pain based on neural ensemble recordings from the central pain circuits involving
S1 and ACC. In Aim 4, we will develop a real-time closed-loop BMI system for modulating acute pain by
combining a detection arm of neural decoding with a therapeutic arm of central neurostimulation. We will test
its effectiveness using established pain behavior assays. Together, these results will enable us to dissect
neural circuits and mechanisms for acute pain and provide a template for next-generation demand-based
pain treatment.
RELEVANCE (See Instructions):
This project is aimed to dissect circuit mechanisms of acute pain and develop closed-loop BMI system for
pain control. We will combine experimental, computational and engineering techniques to decode acute pain
signals and apply them to develop real-time BMI system for pain modulation using neurostimulation. The
proposed research will not only reveal important mechanisms of acute pain, but will also provide new
insiahts on theraoeutic treatment of oain analaesia.
疼痛是一种多维体验,包括感官和情感成分。人类成像
研究已经确定了可以编码不同疼痛的关键皮质区域内活动模式
经验,但目前尚不清楚如何在单个神经元的水平上可靠地编码疼痛
或神经元种群。原发性体感皮质(S1)被认为在
疼痛的感觉歧义方面,但已知前扣带回皮质(ACC)起着至关重要的作用
在疼痛的情感动机体验中的作用。但是,成像研究无法提供因果关系
电路与行为之间的关系,并受到时间分辨率差进一步限制。因此,
完全了解生理急性疼痛的神经法规仍然缺失。神经调节为a
疼痛治疗的潜在选择;但是当前的技术(例如深脑刺激(DB))缺乏最佳
目标并需要持续的刺激,并具有不希望的副作用。我们将使用大鼠模型发现疼痛
关键中央神经回路的机制,并开发出基于需求的脑机界面(BMI)
及时地集成了疼痛信号和精确的暂时镇痛控制的检测。在AIM 1中,我们将确定
用于编码急性疼痛的皮质回路。我们将同时收集S1和ACC合奏录音
从自由行为的大鼠中表征其在单细胞和人群水平上的发射模式。在
AIM 2,我们将确定中央疼痛电路如何通过中央与周围镇痛策略改变
使用光遗传学和药理方法。在AIM 3中,我们将开发可靠的计算
基于中央疼痛电路的神经合奏记录来解码急性疼痛的策略
S1和ACC。在AIM 4中,我们将开发一个实时闭环BMI系统,用于通过
将神经解码的检测臂与中央神经刺激的治疗臂结合在一起。我们将测试
使用既定的疼痛行为分析的有效性。这些结果在一起将使我们能够剖析
神经回路和急性疼痛的机制,并为下一代需求提供模板
疼痛治疗。
相关性(请参阅说明):
该项目的目的是剖析急性疼痛的电路机制,并开发用于闭环BMI系统
疼痛控制。我们将结合实验,计算和工程技术来解码急性疼痛
信号并将其应用于使用神经刺激的实时BMI系统进行疼痛调节。这
拟议的研究不仅会揭示急性疼痛的重要机制,而且还将提供新的
Oain Analaesia的静脉治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhe Sage Chen其他文献
Zhe Sage Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhe Sage Chen', 18)}}的其他基金
Predictive Biosignature for Endoscopic Therapy for Chronic Pancreatitis Pain
慢性胰腺炎疼痛内镜治疗的预测生物特征
- 批准号:
10794609 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Cortical information integration as a model for pain perception and behavior
皮质信息整合作为疼痛感知和行为的模型
- 批准号:
10205303 - 财政年份:2021
- 资助金额:
$ 37.08万 - 项目类别:
CRNS: An Integrative Study of Hippocampal-Neocortical Memory Coding during Sleep
CRNS:睡眠期间海马-新皮质记忆编码的综合研究
- 批准号:
10401807 - 财政年份:2018
- 资助金额:
$ 37.08万 - 项目类别:
CRNS: An Integrative Study of Hippocampal-Neocortical Memory Coding during Sleep
CRNS:睡眠期间海马-新皮质记忆编码的综合研究
- 批准号:
9920779 - 财政年份:2018
- 资助金额:
$ 37.08万 - 项目类别:
CRCN: Dissecting Neural Circuits for Acute Pain
CRCN:剖析急性疼痛的神经回路
- 批准号:
9242180 - 财政年份:2016
- 资助金额:
$ 37.08万 - 项目类别:
相似国自然基金
急性牙髓炎疼痛昼夜变化的中枢调控新机制:节律基因Per1/HIF-1α轴调控铁代谢介导小胶质细胞差异性极化
- 批准号:82370986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
- 批准号:82305369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从急性到慢性下腰腿痛:默认网络对疼痛的编码作用及其机制的MRI研究
- 批准号:82160331
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Low-dose buccal buprenorphine: Relative abuse potential and postoperative analgesic acceptability
低剂量含服丁丙诺啡:相对滥用潜力和术后镇痛可接受性
- 批准号:
10572350 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Development of LPA5 Antagonists as Analgesics
LPA5 拮抗剂镇痛药的开发
- 批准号:
10638278 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Designed Multiple Ligands as Non-opioid Analgesics for Treating Chronic Pain
设计多种配体作为非阿片类镇痛药,用于治疗慢性疼痛
- 批准号:
10621646 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Age-and sex-dependent pharmacodynamics and pharmacokinetics of oral and smoked delta-9-THC
口服和吸食 delta-9-THC 的年龄和性别依赖性药效学和药代动力学
- 批准号:
10708932 - 财政年份:2022
- 资助金额:
$ 37.08万 - 项目类别: