Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
基本信息
- 批准号:9237531
- 负责人:
- 金额:$ 42.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-09 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAffectAnti-Bacterial AgentsApatitesArchitectureBacteriaBiologicalCaries preventionCatalysisCell LineCell SurvivalCellsCessation of lifeChemicalsChlorhexidineClinicalConfocal MicroscopyDental EnamelDental cariesDevelopmentDextransDisease modelEffectivenessEnsureEvaluationExhibitsExpenditureExposure toExtracellular MatrixFaceFluoridesFormulationFree RadicalsGenerationsGingivaGoalsGoldHardnessHealthcareHigh PrevalenceHydrogen PeroxideIn SituIn VitroInfectionIronLeadLesionLocal Anti-Infective AgentsMechanicsMedical DeviceMetalsMicrobeMicrobial BiofilmsMineralsModalityModelingMouth DiseasesMucous MembraneOralOral healthOral mucous membrane structureOrganOutcomePeroxidasesPharmaceutical PreparationsPhysiologicalPreventionPreventiveProcessProductionPropertyRodentRodent ModelSaltsSeverity of illnessStructureSystemTestingTherapeuticTimeTissuesTopical applicationTreatment ProtocolsVirulentWorkanticariesantimicrobialantimicrobial drugbasebiomaterial compatibilitybiophysical techniquescalcium phosphatecariogenic bacteriaclinical efficacyclinical translationclinically relevantcohesioncostcytotoxiccytotoxicitydemineralizationdrug efficacyeffective therapyefficacy studyfascinateimprovedin vivoiron oxidekillingsmanganese chloridemicroCTnanomaterialsnanoparticlenovel strategiespreventproduct developmentsoft tissuespatiotemporaltechnology developmenttime use
项目摘要
Despite the high prevalence of biofilm-related oral diseases such as dental caries, there are no clinically
effective therapies to disrupt virulent biofilms, resulting in >$40 billion expenditures annually in the US.
Effective control of cariogenic biofilms is notoriously challenging because the bacteria are enmeshed in a
protective extracellular matrix rich in exopolysaccharides (EPS). Furthermore, EPS-enmeshed bacteria create
highly acidic microenvironments that promote acid-dissolution of tooth enamel, leading to the onset of dental
caries. Current antimicrobial agents are incapable of disrupting the EPS matrix or affecting the physico-
chemical aspects of caries and often fail to efficiently kill the microbes within biofilms, resulting in limited
efficacy in vivo. To overcome these remarkable hurdles, we have developed an exciting therapeutic strategy
using biocompatible iron oxide nanoparticles (IO-NP) with catalytic activity and pH-responsive properties that
display both anti-biofilm and anti-caries actions. IO-NP exhibit peroxidase-like activity at acidic pH values that
rapidly activates hydrogen peroxide (H2O2) in situ to simultaneously degrade the protective biofilm EPS-matrix
and kill embedded bacteria with exceptional efficacy (>5-log reduction of cell viability) in 5 minutes. Moreover,
IO-NP also reduce apatite demineralization in acidic conditions. We hypothesize that IO-NP synergizes with
H2O2 to amplify anti-biofilm effects and prevent the onset of dental caries in vivo via nanocatalysis and
enhanced in situ production of antibacterial, EPS-degrading and demineralization-blocking agents at acidic pH.
The significance of this work is to develop a feasible and superior anti-biofilm and caries preventive approach
compared to current chemical modalities. To test our hypothesis, we will optimize the efficacy of IO-NP/H2O2 to
further improve anti-biofilm and demineralizing-blocking activities (Aim 1). We will enhance the catalytic activity
of IO-NP by inclusion of specific metal salts into the nanoparticles, and explore the effects of various dextran-
based coatings to increase IO-NP localization within biofilm structure. Furthermore, we will incorporate
calcium-phosphate into IO-NP to enhance its effects on demineralization. Then, we will evaluate the efficacy of
enhanced IO-NP/H2O2 for biofilm control in vitro using a mixed-species, cariogenic biofilm model (Aim 2). We
will further elucidate the biological actions of IO-NP/H2O2 using time-lapsed confocal and biophysical methods
to examine spatiotemporal degradation of EPS-matrix, bacterial killing and cohesiveness within intact biofilms.
The effects on enamel demineralization will be assessed using micro-hardness and micro-CT. In Aim 3, we will
evaluate the biocompatibility and efficacy of the developed IO-NP/H2O2 therapy in hindering cariogenic biofilms
and the onset of carious lesions in vivo using a rodent caries model with a clinically-relevant topical treatment
regimen. Successful completion of these aims will provide a framework for further formulation development
and clinical efficacy studies. Importantly, IO-NP can be synthesized with low cost at large scale while H2O2 is
readily available, which could lead to a feasible new anti-biofilm/anti-caries therapeutic platform for topical use.
尽管生物膜相关的口腔疾病(例如龋齿)的患病率很高,但在临床上没有
有效破坏有毒生物膜的有效疗法,每年在美国造成400亿美元的支出。
众所周知,有效控制商蛋白生物膜是具有挑战性的,因为细菌被嵌入
富含外多糖的保护性细胞外基质(EPS)。此外,EPS添加细菌会产生
高度酸性的微环境,促进牙齿牙釉质的酸排序,导致牙齿发作
龋齿。当前的抗菌剂无法破坏EPS基质或影响物理
龋齿的化学方面,通常无法有效地杀死生物膜内的微生物,导致有限
体内功效。为了克服这些巨大的障碍,我们制定了令人兴奋的治疗策略
使用具有催化活性和pH响应特性的生物相容性铁纳米颗粒(IO-NP)
同时显示抗生物膜和抗卡里膜动作。 IO-NP在酸性pH值下表现出过氧化物酶样活性
迅速激活过氧化氢(H2O2),以同时降解保护性生物膜EPS-MATRIX
并在5分钟内杀死具有出色的功效(细胞活力降低> 5-log降低)的嵌入细菌。而且,
IO-NP还减少了酸性条件下的磷灰石去矿化。我们假设IO-NP与
H2O2可以扩增抗生物膜的作用,并通过纳米催化和
在酸性pH值下,增强了抗菌,EPS降解和非矿化阻滞剂的原位产生。
这项工作的意义是开发可行的抗生物膜和性含症的预防方法
与当前的化学方式相比。为了检验我们的假设,我们将优化IO-NP/H2O2的功效
进一步改善了抗生物膜和脱矿质封锁活动(AIM 1)。我们将增强催化活性
通过将特定的金属盐纳入纳米颗粒中,并探索各种右旋
基于生物膜结构中IO-NP定位的基于涂料。此外,我们将合并
磷酸钙进入IO-NP,以增强其对脱矿化的影响。然后,我们将评估
使用混合物种,致癌生物膜模型增强了体外生物膜对照的IO-NP/H2O2(AIM 2)。我们
将进一步阐明使用时间范围的共聚焦和生物物理方法的IO-NP/H2O2的生物学作用
检查完整生物膜内EPS-矩阵的时空降解,细菌杀伤和凝聚力。
将使用微硬度和微观CT评估对搪瓷脱源性的影响。在AIM 3中,我们将
评估开发的IO-NP/H2O2疗法在阻碍性致富生物膜中的生物相容性和功效
以及使用啮齿动物龋齿模型在体内发作,并具有与临床相关的局部治疗
方案。这些目标的成功完成将为进一步制定开发提供框架
和临床功效研究。重要的是,IO-NP可以大规模合成,而H2O2为
随时可用,这可能会导致可行的新抗生物胶片/抗卡里式治疗平台,用于局部使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Koo其他文献
Hyun Koo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Koo', 18)}}的其他基金
Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10658028 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441517 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10270570 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441630 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656236 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10414192 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656244 - 财政年份:2021
- 资助金额:
$ 42.69万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10493429 - 财政年份:2016
- 资助金额:
$ 42.69万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10020562 - 财政年份:2016
- 资助金额:
$ 42.69万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Gut Microbial Factors in Farming Lifestyle and Allergic Sensitization
农业生活方式和过敏致敏中的肠道微生物因素
- 批准号:
10633368 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别:
Decoding Microbial Diversity in the Human Gut Microbiome
解码人类肠道微生物组中的微生物多样性
- 批准号:
10713170 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别:
Bacterial CRISPR interference to define macrophage responses to group B Streptococcus proteins
细菌 CRISPR 干扰定义巨噬细胞对 B 族链球菌蛋白的反应
- 批准号:
10724607 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别:
Role of extracellular vesicles in assaying and regulating immune dysfunction after burn injury
细胞外囊泡在测定和调节烧伤后免疫功能障碍中的作用
- 批准号:
10607063 - 财政年份:2023
- 资助金额:
$ 42.69万 - 项目类别: