Spectroscopic Photoacoustic Molecular Imaging for Breast Lesion Characterization
用于乳腺病变表征的光谱光声分子成像
基本信息
- 批准号:9314864
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAlgorithmsAntibodiesBenignBindingBinding ProteinsBioinformaticsBiological Neural NetworksBiopsyBreastBreast Cancer DetectionBreast Cancer ModelCD276 geneCallbackCancer BiologyCancer DetectionCessation of lifeClassificationClinicClinicalContrast MediaDataDetectionDevelopmentDigital Signal ProcessingDimensionsEarly DiagnosisEducationEthicsExcisionFDA approvedFacultyFemaleFluorescenceFluorescent DyesFrozen SectionsGoalsHealthHistologicHyperplasiaImageIndividualIndocyanine GreenInstitutionLesionLinear RegressionsMachine LearningMalignant - descriptorMalignant NeoplasmsMammary Gland ParenchymaMammographyMeasuresMedicalMentorsMeta-AnalysisMethodologyMethodsModalityModelingMolecularMolecular TargetMusNoiseNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOpticsPatientsPostoperative PeriodPredictive ValuePreparationProspective StudiesROC CurveRecurrenceResearchResearch PersonnelSchemeSensitivity and SpecificitySignal TransductionSpecificityStatistical MethodsSupervisionTechnical ExpertiseTechniquesTestingTherapeuticTimeTissue ModelTissuesTrainingTransgenic MiceTransgenic OrganismsTranslatingUltrasonographyUnited StatesValidationWomanabsorptionantibody conjugatebasebreast imagingbreast lesionbreast surgerycancer biomarkerscareercareer developmentclinically actionableclinically translatablecontrast enhancedcostcourse developmentdesigndiagnostic accuracyeconomic needfluorescence imagingformal learningimage processingimaging agentimaging approachimaging modalityimprovedin vivoinformal learningmalignant breast neoplasmmolecular imagingmortalitymouse modelnoveloptical imagingoverexpressionprototypescreeningtargeted agenttargeted imagingtooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Claiming more than 40,000 lives in the United States in 2015, breast cancer presents an important health
focus. Mammography and ultrasound, current screening methods, suffer from low sensitivity and low positive
predictive value, respectively, particularly in patients with dense breast tissues. Therefore, a non-invasive
method of distinguishing between benign and malignant lesions that could be incorporated with current
screening modalities is critically needed. With more advanced screening methods, there is an increase in the
detection of early malignant lesions, for which breast-conserving treatment has become more routine.
However, intraoperative frozen-section margin assessment is time consuming and suffers from low sensitivity,
while post-operative histological analysis leaves potential for positive margins, strongly correlated with
reoccurrence. Therefore, a real-time method to detect tumor margins intraoperatively is critically needed. We
propose using spectroscopic photoacoustic and fluorescence molecular imaging combined with a clinically-
translatable contrast agent targeted to a novel breast cancer marker (B7-H3) to non-invasively distinguish
normal from malignant tissues both during screening (aim 1) and intraoperatively during surgical resection (aim
3). The sensitivity of this imaging method will be increased with the use of machine learning post-processing
algorithms to autonomously detect molecular B7-H3 signal (aim 2). In summary, this proposal will result in
significant change to current clinical breast imaging and surgical resection practice to improve the detection
and treatment of focal breast lesions.
The training portion of this plan, required to accomplish these research goals, has been designed with trainee
mentors with specific technical expertise. Dr. Willmann is an expert in translational molecular imaging and
contrast agent use, while Dr. Rubin is an expert in bioinformatics, image processing, and machine learning for
medical imagine purposes. Additionally, the project is supported by a diverse advisory committee with experts
in clinical breast imaging (Dr. Debra Ikeda), optical imaging and intraoperative guidance (Dr. Christopher
Contag), and clinical breast surgery (Dr. Irene Wapnir). To date, the candidate has developed expertise in
photoacoustic, ultrasound, and fluorescence molecular imaging and molecular contrast agent development and
in vivo use during her graduate and postdoctoral research. Her long term career goals include developing
clinically translatable combined spectroscopic photoacoustic and fluorescence molecular imaging methods
combined with novel contrast agents for cancer detection and differentiation. Additionally, her research will
focus on developing machine learning algorithms for increasing the sensitivity of the molecular imaging
approach as well as adapting her method for therapeutic purposes. In preparation for her independent
research career, the training plan includes formal education in machine learning, digital signal processing,
optical imaging, and cancer biology, as well as in career development classes and ethical conduct of research.
项目概要/摘要
2015 年,乳腺癌在美国夺去了超过 40,000 人的生命,是一种重要的健康问题
重点。目前的筛查方法包括乳房X光检查和超声检查,但灵敏度低、阳性率低
分别具有预测价值,特别是对于乳腺组织致密的患者。因此,一种非侵入式
区分良性和恶性病变的方法可以与当前的相结合
迫切需要筛查方式。随着更先进的筛查方法的出现,
发现早期恶性病变,为此保乳治疗已变得更加常规。
然而,术中冰冻切片切缘评估耗时且灵敏度低,
而术后组织学分析留下了阳性切缘的潜力,与
再次发生。因此,迫切需要一种术中实时检测肿瘤边缘的方法。我们
建议使用光谱光声和荧光分子成像结合临床
针对新型乳腺癌标志物 (B7-H3) 的可翻译造影剂,可进行非侵入性区分
在筛查期间(目标 1)和手术切除期间的术中(目标
3)。随着机器学习后处理的使用,这种成像方法的灵敏度将会提高
自主检测分子 B7-H3 信号的算法(目标 2)。总而言之,该提案将导致
当前临床乳腺成像和手术切除实践的重大改变,以提高检测能力
以及局部乳腺病变的治疗。
完成这些研究目标所需的该计划的培训部分是与受训者一起设计的
具有特定技术专长的导师。 Willmann 博士是转化分子成像领域的专家
造影剂的使用,而 Rubin 博士是生物信息学、图像处理和机器学习方面的专家
医学想象的目的。此外,该项目得到了由专家组成的多元化咨询委员会的支持
临床乳腺成像(Debra Ikeda 博士)、光学成像和术中指导(Christopher 博士)
Contag)和临床乳腺外科(Irene Wapnir 博士)。迄今为止,候选人已经发展了以下方面的专业知识:
光声、超声和荧光分子成像和分子造影剂的开发和
在她的研究生和博士后研究期间体内使用。她的长期职业目标包括发展
临床可转化的光谱光声和荧光分子成像组合方法
与新型造影剂结合用于癌症检测和分化。此外,她的研究将
专注于开发机器学习算法以提高分子成像的灵敏度
方法以及调整她的方法以达到治疗目的。为她的独立做准备
研究生涯,培训计划包括机器学习、数字信号处理、
光学成像、癌症生物学,以及职业发展课程和研究的道德行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katheryne E Wilson其他文献
Katheryne E Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katheryne E Wilson', 18)}}的其他基金
Molecular Spectroscopic Photoacoustic Imaging for Breast Lesion Characterization
用于乳腺病变表征的分子光谱光声成像
- 批准号:
9303366 - 财政年份:2016
- 资助金额:
$ 7.6万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Highly-sensitive, rapid and low cost plasmonic assay platform for Lyme disease diagnosis
用于莱姆病诊断的高灵敏度、快速且低成本的等离子体检测平台
- 批准号:
10546574 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
Molecular Mechanisms and Treatment of Diffuse Axonal Injury
弥漫性轴突损伤的分子机制和治疗
- 批准号:
10727616 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
Neoantigen-Targeted Vaccines in Combination with Immune Checkpoint Inhibitors for Pancreatic Cancer
新抗原靶向疫苗联合免疫检查点抑制剂治疗胰腺癌
- 批准号:
10301252 - 财政年份:2021
- 资助金额:
$ 7.6万 - 项目类别:
Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动力学
- 批准号:
10388258 - 财政年份:2021
- 资助金额:
$ 7.6万 - 项目类别:
Biomarking the Sclerostin Antibody Effects on Osseointegration in an Osteogenesis Imperfecta Model
生物标记硬化素抗体对成骨不全模型中骨整合的影响
- 批准号:
10646320 - 财政年份:2021
- 资助金额:
$ 7.6万 - 项目类别: