Predicting Recovery of Cognitive Control Deficits in Traumatic Brain Injury
预测创伤性脑损伤中认知控制缺陷的恢复
基本信息
- 批准号:9315179
- 负责人:
- 金额:$ 27.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAssessment toolBehaviorBehavior assessmentBehavioralBiological MarkersBiological Neural NetworksBrainBrain InjuriesCenters of Research ExcellenceChronicClassificationClinicalCommon Data ElementCommunicationData AnalyticsDevelopmentDiagnosisDiffusionDiffusion Magnetic Resonance ImagingEffectivenessElectrophysiology (science)Emergency MedicineExhibitsFailureGoalsGrantHospitalsImageImage AnalysisImpaired cognitionImpulsivityIndividualInjuryInterventionKnowledgeLesionLifeLinkMeasuresMediatingMonitorNeuronsNew MexicoOccupationalOutcomePathologyPatientsPatternPerformancePhasePopulationProcessPsyche structureQuestionnairesReaction TimeRecoveryRecovery of FunctionRecruitment ActivityRehabilitation therapyReportingResolutionSensitivity and SpecificityServicesSignal TransductionStatistical ModelsStructural defectSurvivorsSymptomsSystemTechniquesTestingTissuesTranslatingTraumatic Brain InjuryTreatment EfficacyUnited States National Institutes of HealthUniversitiesWorkX-Ray Computed Tomographyanatomic imagingbasebehavior measurementclinical developmentclinical practiceclinically relevantcognitive controlcognitive recoverycostdisabilityexperiencefrontal lobeimprovedinjuredinnovationmultimodalityneurobehavioralneurosurgerynovelnovel therapeuticsoperationoutcome forecastprognosticrelating to nervous systemrepairedresponserestorationtherapy developmentwhite matter
项目摘要
Approximately 400,000-500,000 patients remain chronically symptomatic every year following mild or moderate
traumatic brain injury (mmTBI) according to latest estimates. To optimally treat these patients, we must first
understand the underlying neuropathological changes after injury rather than relying on clinical observations
and patient-reported symptoms (i.e. current clinical practice). Our central hypothesis is that structural damage
to white matter following injury will be functionally expressed as a deficiency in the long-distance EEG signals
that underlie cognitive control over behavior. Our preliminary work establishes that theta band synchrony
underlies various forms of cognitive control, providing a common mechanism for understanding the most
prevalent deficits (i.e. distractibility, impulsivity, irritability) following injury. This work will capitalize on our
recent findings that white matter abnormalities are reliably present in mmTBI patients and contribute to
deficiencies in cognitive control. To test our central hypotheses, 100 mmTBI patients (18-55 years) will be
recruited from the Departments of Neurosurgery and Emergency Medicine from our local hospitals. All patients
will undergo a thorough neurobehavioral exam during the early semi-acute (<2 weeks), late semi-acute (2
months) and early chronic (four months) injury stages. Advanced behavioral measures of cognitive control
developed at NIH (EXAMINER battery) and recommended measures from Common Data Elements will be
used to characterize neurobehavioral deficits. Electrophysiology (EEG) will be used to characterize theta band
synchrony during cognitive control and high angular resolution diffusion imaging (HARDI) will be used to
determine white matter abnormalities between the main nodes of the cognitive control network. Finally, in
addition to CT scans, extensive anatomical imaging (T1, T2, FLAIR and SWI) will be conducted to identify
patients with focal lesions. The current grant is innovative both in our multimodal longitudinal approach, as well
as two of our selected biomarkers (white matter and EEG synchrony) for understanding cognitive control
deficits in mmTBI. Novel data analytic techniques (pattern classifiers) will be applied to objectively determine
the bias-free predictive power of these biomarkers on the course of recovery. Following this study, clinicians
will be able to understand the neuronal mechanisms mediating a failure to recover following mmTBI, and
ultimately utilize these biomarkers to determine which patient will require additional rehabilitative services. This
represents a crucial first step for improving diagnosis and developing novel therapeutic options, key
components for other projects on our COBRE application.
每年约有 400,000-500,000 名患者在轻度或中度症状后仍保持慢性症状
根据最新估计,创伤性脑损伤(mmTBI)。为了最佳地治疗这些患者,我们必须首先
了解受伤后潜在的神经病理变化,而不是依赖临床观察
以及患者报告的症状(即当前的临床实践)。我们的中心假设是结构损坏
损伤后白质的功能将表现为长距离脑电图信号的缺陷
这是对行为的认知控制的基础。我们的初步工作确定了 θ 带同步
是各种形式的认知控制的基础,提供了一种通用机制来理解最
受伤后普遍存在缺陷(即注意力分散、冲动、易怒)。这项工作将利用我们的
最近的研究结果表明,白质异常确实存在于 mmTBI 患者中,并有助于
认知控制方面的缺陷。为了检验我们的中心假设,100 名 mmTBI 患者(18-55 岁)将被
从我们当地医院的神经外科和急诊医学科招募。所有患者
将在早期半急性(<2周)、晚期半急性(2周)期间接受彻底的神经行为检查
个月)和早期慢性(四个月)损伤阶段。认知控制的高级行为测量
NIH(检查电池)开发的通用数据元素推荐的措施将
用于表征神经行为缺陷。电生理学 (EEG) 将用于表征 θ 波段
认知控制和高角分辨率扩散成像(HARDI)期间的同步将用于
确定认知控制网络主要节点之间的白质异常。最后,在
除了 CT 扫描外,还将进行广泛的解剖成像(T1、T2、FLAIR 和 SWI)来识别
有局灶性病变的患者。目前的拨款在我们的多模式纵向方法方面都是创新的
作为我们选择的两个生物标志物(白质和脑电图同步),用于理解认知控制
mmTBI 缺陷。将应用新颖的数据分析技术(模式分类器)来客观地确定
这些生物标志物对恢复过程的无偏差预测能力。根据这项研究,临床医生
将能够了解介导 mmTBI 后恢复失败的神经机制,并且
最终利用这些生物标志物来确定哪些患者需要额外的康复服务。这
代表了改善诊断和开发新治疗方案的关键第一步,关键
我们的 COBRE 应用程序上其他项目的组件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES F CAVANAGH其他文献
JAMES F CAVANAGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES F CAVANAGH', 18)}}的其他基金
A Novel Bench-to-Bedside Translational Model of Anhedonia
一种新颖的快感缺乏从临床到临床的转化模型
- 批准号:
10337129 - 财政年份:2019
- 资助金额:
$ 27.13万 - 项目类别:
A Novel Bench-to-Bedside Translational Model of Anhedonia
一种新颖的快感缺乏从临床到临床的转化模型
- 批准号:
10554166 - 财政年份:2019
- 资助金额:
$ 27.13万 - 项目类别:
A Novel Bench-to-Bedside Translational Model of Anhedonia
一种新颖的快感缺乏从临床到临床的转化模型
- 批准号:
9893905 - 财政年份:2019
- 资助金额:
$ 27.13万 - 项目类别:
How Stress Alters Neural Systems of Reinforcement: A Model of Depressive Etiology
压力如何改变强化神经系统:抑郁病因学模型
- 批准号:
7615365 - 财政年份:2008
- 资助金额:
$ 27.13万 - 项目类别:
How Stress Alters Neural Systems of Reinforcement: A Model of Depressive Etiology
压力如何改变强化神经系统:抑郁病因学模型
- 批准号:
7748992 - 财政年份:2008
- 资助金额:
$ 27.13万 - 项目类别:
Predicting Recovery of Cognitive Control Deficits in Traumatic Brain Injury
预测创伤性脑损伤中认知控制缺陷的恢复
- 批准号:
9144416 - 财政年份:
- 资助金额:
$ 27.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
- 批准号:
10759804 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别: