Mapping the Angiotensin II-TGFB-Integrin signaling triad to reveal therapeutic targets in aortic aneurysm

绘制血管紧张素 II-TGFB-整合素信号三联体图谱以揭示主动脉瘤的治疗靶点

基本信息

  • 批准号:
    9274098
  • 负责人:
  • 金额:
    $ 17.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): PROJECT SUMMARY Aortic aneurysm is a prevalent condition defined by excessive aortic growth and medial wall remodeling that can result in lethal dissection and rupture. Few effective pharmacological treatments exist for aneurysm, due in large part to an incomplete understanding of the mechanisms that underlie the disease. The goal of this proposal is to derive a more comprehensive understanding of the molecular events that belie thoracic aortic aneurysm progression, and in so doing identify and validate potential targets for novel pharmacological therapy. Preliminary in vitro and in vivo data indicate that interactions between angiotensin II, integrin, and transforming growth factor β (TGFβ) signaling are key molecular elements of aneurysm pathogenesis. The principal investigator, Dr. Sarah Parker, uses a genetic knock-in mouse model of Marfan syndrome (MFS) to study the context-dependent molecular mechanisms leading to dysregulated TGFβ signaling in thoracic aortic aneurysm. In the mentored phase of this proposal, Dr. Parker will use in vitro techniques to assess how of Integrin β3 (ITGβ3) overexpression, as occurs in MFS, impacts aspects of vascular smooth muscle cell physiology known to be altered in aortic aneurysm, and use novel mass spectrometry technologies (data independent acquisition MS) to identify pathogenic signaling components downstream of ITGβ3 that drive altered VSMC physiology (Aim 1). In the transition to the independent phase, Dr. Parker will identify how another signaling network, β-Arrestin 2 (βARR2) biased signaling by the Angiotensin II Type 1 Receptor (AT1R), contributes to dysregulated TGFβ signaling and altered mechanical properties of VSMCs that occur during aneurysm in MFS (Aim 2). Finally, Dr. Parker will integrate the findings in Aims 1 and 2 to test a unifying hypothesis that altered matrix sensing by ITGβ3 contributes to βARR2 biased signaling by AT1R both in vitro as well as in vivo in MFS mice, and further determine whether pharmacological manipulation of ITGβ3 and/or βARR2-biased signaling can attenuate aneurysm progression in MFS (Aim 3). Dr. Parker received her Ph.D. in Physiology from the Medical College of Wisconsin (MCW). She has subsequently completed the first three and a half years of her Post Doctoral fellowship at Johns Hopkins University under the collaborative mentorship of Dr. Harry (Hal) Dietz, a renowned clinician and expert in the medical genetics of connective tissue disorders and aortic aneurysm, and Dr. Jennifer Van Eyk, a premier expert in clinical cardiovascular proteomics. Building upon her established expertise in cardiovascular physiology and mass spectrometry-based proteomic techniques, this K99/R00 award will allow Dr. Parker to (1) develop informatics and computational skills for the analysis and interpretation of complex molecular data sets, (2) in collaboration with Dr. Megan McCain at the University of Southern California, develop an in vitro model to independently modify matrix components, smooth muscle cell types, and soluble extracellular factors in order to study contractile physiology in smooth muscle cells, (3) continue to build expertise in the vascular biology of the aorta and (4) strengthen her communication, mentoring, management, and leadership skills to prepare for success as an independent biomedical researcher. Dr. Parker will complete the mentored phase of this award at Cedars-Sinai Medical Center (CSMC), where her primary mentor, Dr. Van Eyk, has recently moved her laboratory to become the director of the Advanced Clinical Biosystems Research Institute. Dr. Parker has enlisted an impressive team of mentors and advisors both local to Cedars Sinai (Dr. Jennifer Van Eyk, Dr. Moshe Arditi, Dr. Ben Berman, Dr. Ken Bernstein) and at external institutions (Dr. Hal Dietz, Dr. John Yates, and Dr. Megan McCain) to facilitate her scientific and personal development. The clinical research environments fostered by the institutions where Dr. Parker has been trained (Johns Hopkins, MCW) and will continue her training (CSMC) provide ideal settings to facilitate her long-term career goal to elucidate context-dependent, pathological signaling events in situ and connect them with the altered cellular, tissue, and organ physiology characteristic of disease pathogenesis. Dr. Parker will first focus her approach on the specific etiological mechanisms that drive ascending aortic aneurysm, and intends to eventually expand her research into other areas of cardiovascular biology where the full complexity of external and internal molecular context must be understood in order to best predict the cause-and-effect relationships between cell signaling and pathophysiology. To achieve this goal, Dr. Parker intends to bridge focused mass spectrometry-based discovery workflows with careful biological validation and the pre-clinical testing of novel therapeutic candidates that will be used to treat specific pathologies. This award will be fundamental in supporting Dr. Parker to build the framework for a research program that will achieve her career goals. Furthermore, by completing the aims of this proposal Dr. Parker will make a significant contribution toward the development of new treatments that will prevent the debilitating consequences of aortic aneurysm.
 描述(由申请人提供): 项目摘要 主动脉瘤是一种常见疾病,其特征是主动脉过度生长和内壁重塑,可导致致命的夹层和破裂,目前对动脉瘤的有效药物治疗方法很少。该提案的目的是更全面地了解导致胸主动脉瘤的分子事件。初步的体外和体内数据,从而识别和验证新型药物治疗的进展潜在目标。 表明血管紧张素 II、整合素和转化生长因子 β (TGFβ) 信号之间的相互作用是动脉瘤发病机制的关键分子元件。首席研究员 Sarah Parker 博士使用马凡氏综合征 (MFS) 的基因敲入小鼠模型来研究动脉瘤的发生机制。研究导致胸主动脉瘤中 TGFβ 信号失调的背景依赖性分子机制。在该提案的指导阶段,Parker 博士将使用体外技术来评估整合素的作用。 β3 (ITGβ3) 过度表达(如 MFS 中发生的情况)会影响已知在主动脉瘤中发生改变的血管平滑肌细胞生理学的各个方面,并使用新型质谱技术(数据独立采集 MS)来识别 ITGβ3 下游驱动改变的致病信号成分VSMC 生理学(目标 1),在过渡到独立阶段时,Parker 博士将确定另一个信号网络 β-Arrestin 2 (βARR2) 如何通过 VSMC 偏向信号传导。血管紧张素 II 1 型受体 (AT1R) 会导致 MFS 动脉瘤期间发生的 TGFβ 信号失调和 VSMC 机械特性改变(目标 2),最后,Parker 博士将整合目标 1 和 2 中的发现来检验统一的假设。在 MFS 小鼠体内和体外,ITGβ3 改变的基质传感有助于 AT1R 的 βARR2 偏向信号传导,并进一步确定是否Parker 博士在威斯康星医学院 (MCW) 获得了生理学博士学位,随后完成了前三个研究。她在约翰·霍普金斯大学进行了半年的博士后研究,并在著名临床医生和结缔组织医学遗传学专家 Harry (Hal) Dietz 博士的指导下进行了合作组织疾病和主动脉瘤以及临床心血管蛋白质组学领域的顶级专家 Jennifer Van Eyk 博士凭借其在生理学和基于质谱的蛋白质组学技术方面的专业知识,该 K99/R00 奖项将使 Parker 博士能够 (1)培养分析和解释复杂分子数据集的信息学和计算技能,(2)与南加州大学的 Megan McCain 博士合作,开发独立修改矩阵的体外模型成分、平滑肌细胞类型和可溶性细胞外因子,以便研究平滑肌细胞的收缩生理学,(3) 继续积累主动脉血管生物学方面的专业知识,(4) 加强沟通、指导、管理和领导力Parker 博士将在 Cedars-Sinai 医疗中心 (CSMC) 完成该奖项的指导阶段,她的主要导师 Van Eyk 博士最近将她的实验室搬到了该中心。导演Parker 博士在 Cedars Sinai 本地和外部招募了一支令人印象深刻的导师和顾问团队(Jennifer Van Eyk 博士、Moshe Arditi 博士、Ben Berman 博士、Ken Bernstein 博士)。 Parker 博士接受过培训的机构(约翰·霍普金斯大学、约翰·霍普金斯大学、 MCW)并将继续她的培训(CSMC),这为她的长期职业目标提供了理想的环境,即阐明背景依赖性的原位病理信号事件,并将它们与疾病发病机制改变的细胞、组织和器官生理学特征联系起来。 Parker 博士将首先将她的方法重点放在驱动升主动脉瘤的特定病因机制上,并打算最终将她的研究扩展到心血管生物学的其他领域,在这些领域中,必须了解外部和内部分子背景的全部复杂性,以便最好地预测为了实现这一目标,帕克博士打算将基于质谱的发现工作流程与仔细的生物学验证和用于新型治疗候选药物的临床前测试联系起来。该奖项对于支持 Parker 博士构建实现其职业目标的研究项目框架至关重要。此外,通过完成该提案的目标,Parker 博士将为该领域的发展做出重大贡献。新的治疗方法将预防主动脉瘤的衰弱后果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah J Parker其他文献

Influenza vaccination coverage among an urban pediatric asthma Influenza vaccination coverage among an urban pediatric asthma population: Implications for population health population: Implications for population health
城市儿童哮喘人群的流感疫苗接种覆盖率 城市儿童哮喘人群的流感疫苗接种覆盖率:对人口健康的影响 人口:对人口健康的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sarah J Parker;Amy M DeLaroche;Alex B. Hill;Rajan Arora;ID JulieGleason
  • 通讯作者:
    ID JulieGleason
Monitoring Diagnostic Safety Risks in Emergency Departments: Protocol for a Machine Learning Study
监测急诊科的诊断安全风险:机器学习研究协议
  • DOI:
    10.2196/preprints.24642
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Moein Enayati;M. Sir;Xingyu Zhang;Sarah J Parker;Elizabeth Duffy;Hardeep Singh;P. Mahajan;K. Pasupathy
  • 通讯作者:
    K. Pasupathy
Clinical factors associated with the use of dexamethasone for asthma in the pediatric emergency department
儿科急诊室使用地塞米松治疗哮喘的相关临床因素
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Amy M DeLaroche;F. Mowbray;Sarah J Parker;Y. Ravichandran;A. Jones
  • 通讯作者:
    A. Jones

Sarah J Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah J Parker', 18)}}的其他基金

Mechanisms of sex-biased risk and resiliency in aneurysm and dissection
动脉瘤和夹层的性别偏见风险和弹性机制
  • 批准号:
    10705715
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Mechanisms of sex-biased risk and resiliency in aneurysm and dissection
动脉瘤和夹层的性别偏见风险和弹性机制
  • 批准号:
    10532033
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Asporin, an extracellular protein, regulates cardiac remodeling
阿孢菌素是一种细胞外蛋白,调节心脏重塑
  • 批准号:
    10441587
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
Asporin, an extracellular protein, regulates cardiac remodeling
阿孢菌素是一种细胞外蛋白,调节心脏重塑
  • 批准号:
    10658863
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
Mapping the Angiotensin II-TGFB-Integrin signaling triad to reveal therapeutic targets in aortic aneurysm
绘制血管紧张素 II-TGFB-整合素信号三联体图谱以揭示主动脉瘤的治疗靶点
  • 批准号:
    9108213
  • 财政年份:
    2016
  • 资助金额:
    $ 17.1万
  • 项目类别:

相似国自然基金

WWOX基因CNV变异影响新疆地区哈萨克族颅内动脉瘤发生的机制研究
  • 批准号:
    82360247
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
昼夜节律紊乱对腹主动脉瘤发生发展的影响:生物钟核受体REV-ERBα的关键作用
  • 批准号:
    82230014
  • 批准年份:
    2022
  • 资助金额:
    263 万元
  • 项目类别:
    重点项目
S100A8/A9影响骨髓单核细胞造血参与小鼠腹主动脉瘤进展的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硝基化共轭亚油酸介导平滑肌细胞TFEB烷基化修饰对腹主动脉瘤的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
  • 批准号:
    10754079
  • 财政年份:
    2023
  • 资助金额:
    $ 17.1万
  • 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
  • 批准号:
    10586692
  • 财政年份:
    2023
  • 资助金额:
    $ 17.1万
  • 项目类别:
GATA4 as a Modulator of Aortic Root Sensitivity to Mechanochemical Disruptions Caused by an Aneurysm-causing Mutation
GATA4 作为主动脉根部对动脉瘤突变引起的机械化学破坏敏感性的调节剂
  • 批准号:
    10462239
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Mechanisms of sex-biased risk and resiliency in aneurysm and dissection
动脉瘤和夹层的性别偏见风险和弹性机制
  • 批准号:
    10705715
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Mechanisms of sex-biased risk and resiliency in aneurysm and dissection
动脉瘤和夹层的性别偏见风险和弹性机制
  • 批准号:
    10532033
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了