Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
基本信息
- 批准号:8694173
- 负责人:
- 金额:$ 28.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:26S proteasomeATP HydrolysisATP phosphohydrolaseActive SitesAffectAgingAllosteric RegulationBindingBiochemicalBiologicalBiological ModelsCell modelCell physiologyCellsComplexDataDegenerative DisorderDegradation PathwayDevelopmentDiseaseDrug DesignEnzymesEventFamilyFoundationsGoalsIn VitroIndividualKnowledgeLifeLinkMalignant NeoplasmsMechanicsMissionModelingMolecularMolecular MachinesMolecular ModelsNeurodegenerative DisordersOutcomePathway interactionsPeptidesPositioning AttributeProcessProtein BindingProteinsPublic HealthRecruitment ActivityRegulationResearchRoleStructureSystemTherapeutic AgentsTimeUbiquitinUbiquitinated Protein DegradationWorkYeast Model Systembasebiophysical techniquesgenetic regulatory proteinhuman diseaseinnovationinsightmolecular modelingmulticatalytic endopeptidase complexnovelnovel therapeuticsp97 ATPaseparticleprotein degradationprotein functionpublic health relevancereconstitutiontherapeutic developmenttoolyeast genetics
项目摘要
DESCRIPTION (provided by applicant): The Ubiquitin Proteasome System regulates essentially every cellular process and its misregulation can cause or potentiate disease. The 20S core proteasome is the endpoint of this process and its internal active sites degrade proteins to small peptides. However, there is a gap in our knowledge about how ubiquitinated proteins are recognized and then injected into the 20S for degradation. Two different ATP-dependent complexes have been shown to catalyze the degradation of ubiquitinated proteins, the 19S regulatory particle and P97 (VCP/CDC48). The 19S associates with the 20S to make the 26S proteasome; however, we do not understand how the 19S's molecular machinery-its ring of ATPases-uses ATP to bind and translocate substrates into the 20S. Even less is understood about how P97 catalyzes protein degradation including whether or not it even associates with the proteasome. Our long-term goal is to understand how protein degradation is regulated and to develop modulators that specifically target these regulatory mechanisms, which can be used as research tools or therapeutic agents. The overall objective of this application, which is the next step toward attaining this long- term goal, is to elucidate how the proteasomal ATPases and P97 function at a molecular level to facilitate protein degradation. The rationale for this objective is that detailed molecular models of how ubiquitinated proteins are processed for degradation are needed to understand how their misregulation is involved in disease. The objective of the application will be attained by pursuing two specific aims. The first
aim will determine how allosteric regulation in the proteasomal ATPases control the position and timing of ATP hydrolysis to properly coordinate substrate degradation. Various biochemical and biophysical approaches will be taken utilizing both archaeal and eukaryotic model systems supported by yeast genetics. The second aim will determine how P97 catalyzes substrate degradation by the proteasome. Similar enzymological approaches will be taken using in vitro reconstituted systems, and the importance of a putative P97-20S interaction will be evaluated in mammalian and yeast model systems. This approach is innovative because we have generated a novel experimental system that will allow us to investigate the specific roles and functions of these enzymes and apply these findings to cell models in novel ways to determine their functional and biological roles. These outcomes are expected to have an important positive impact because they identify regulatory features of the UPS that have been missing from our under- standing of ubiquitin-dependent protein degradation. This contribution is significant because an understanding of how these molecular machines catalyze protein degradation is essential for understanding how this critical process can be misregulated in diseases such as cancer, neurodegenerative disease and aging. Such insights will lay the foundation for the development of new therapeutic strategies to specifically inhibit or activate these separate degradation pathways.
描述(由申请人提供):泛素蛋白酶体系统基本上调节每个细胞过程,其调节不当可能导致或加剧疾病。 20S核心蛋白酶体是该过程的终点,其内部活性位点将蛋白质降解为小肽。然而,我们对泛素化蛋白如何被识别然后注入 20S 进行降解的了解还存在空白。两种不同的 ATP 依赖性复合物已被证明可以催化泛素化蛋白的降解,即 19S 调节颗粒和 P97 (VCP/CDC48)。 19S与20S结合形成26S蛋白酶体;然而,我们不了解 19S 的分子机制(其 ATP 酶环)如何使用 ATP 结合底物并将其转移到 20S 中。关于 P97 如何催化蛋白质降解,包括它是否与蛋白酶体相关,人们了解得更少。我们的长期目标是了解蛋白质降解是如何调节的,并开发专门针对这些调节机制的调节剂,这些调节剂可用作研究工具或治疗剂。该应用的总体目标是阐明蛋白酶体 ATP 酶和 P97 如何在分子水平上发挥作用以促进蛋白质降解,这是实现这一长期目标的下一步。这一目标的基本原理是需要详细的泛素化蛋白质如何加工降解的分子模型,以了解它们的失调如何与疾病相关。该应用程序的目标将通过追求两个具体目标来实现。第一个
目的将确定蛋白酶体 ATP 酶中的变构调节如何控制 ATP 水解的位置和时间,以正确协调底物降解。将利用酵母遗传学支持的古菌和真核模型系统,采取各种生物化学和生物物理方法。第二个目标是确定 P97 如何催化蛋白酶体降解底物。将使用体外重构系统采取类似的酶学方法,并且将在哺乳动物和酵母模型系统中评估假定的 P97-20S 相互作用的重要性。这种方法是创新的,因为我们已经生成了一个新颖的实验系统,使我们能够研究这些酶的具体作用和功能,并以新的方式将这些发现应用到细胞模型中,以确定它们的功能和生物学作用。这些结果预计将产生重要的积极影响,因为它们确定了 UPS 的调控特征,而这些特征是我们对泛素依赖性蛋白质降解的理解中所缺失的。这一贡献意义重大,因为了解这些分子机器如何催化蛋白质降解对于理解这一关键过程在癌症、神经退行性疾病和衰老等疾病中如何被错误调节至关重要。这些见解将为开发新的治疗策略奠定基础,以特异性抑制或激活这些单独的降解途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Matthew Smith其他文献
David Matthew Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Matthew Smith', 18)}}的其他基金
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
10247747 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
9301593 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
8875711 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
10474492 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
10022500 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
相似国自然基金
CD39通过水解胞外ATP促进衰老致学习记忆障碍的机制研究
- 批准号:82304470
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ATP水解酶介导ROS稳态调控拟南芥根尖干细胞维持的分子机制
- 批准号:32300292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SecY通道转运的机理研究
- 批准号:31870835
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
肠道病毒解旋酶在囊泡膜上组装六聚体及催化双链RNA解旋结构基础
- 批准号:81772207
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
细菌DNA复制解旋酶水解ATP和解开dsDNA的偶联机制研究
- 批准号:31270783
- 批准年份:2012
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
9301593 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Mechanisms regulating proteasomal substrate degradation
蛋白酶体底物降解的调节机制
- 批准号:
8875711 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Structure of functionally important dynamic states of the proteasome
蛋白酶体功能重要动态的结构
- 批准号:
9130874 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Structure of functionally important dynamic states of the proteasome
蛋白酶体功能重要动态的结构
- 批准号:
8925908 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别:
Structure of functionally important dynamic states of the proteasome
蛋白酶体功能重要动态的结构
- 批准号:
9339698 - 财政年份:2014
- 资助金额:
$ 28.31万 - 项目类别: