Methods for high-dimensional data in HIV/CVD research

HIV/CVD 研究中的高维数据方法

基本信息

  • 批准号:
    8423746
  • 负责人:
  • 金额:
    $ 38.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-03 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Recent technological advances have yielded vast quantities of molecular and cellular data, affording unprecedented opportunities to understand complex disease etiologies and to inform clinical management strategies. However, in order to derive information from these rich stores of data we need to develop sound and appropriate analytic techniques. This need is especially relevant in studies at the intersection of human immunodeficiency virus (HIV) and cardiovascular disease (CVD), which are characterized by an elaborate set of interactions among viral and host factors. These factors include viral and host genetic profiles, as well as markers of caloric metabolism, immune activation and inflammation, which work together to determine response to therapy and overall disease progression. A comprehensive assessment of these markers presents several analytical challenges owing to the large number of potentially informative variables and the largely uncharacterized relationship among them. We propose a multi-faceted strategy that focuses on the development and application of integrative statistical approaches. Such approaches will allow us to explore and characterize novel hypotheses relating to the complex relationships among multiple genetic, environmental, demographic, and clinical factors and measures of disease progression. Specifically, this continuation application focuses on advancing and applying statistical methods in two settings: first, we consider population-based genetic association studies of innate-immunity, adipokine, drug metabolism and drug transport genes and markers of immune reconstitution, inflammation and risk of CVD in HIV-infected individuals; and second, we address investigations of metabolic and immunologic profiles that associate with immune recovery, inflammation and risk of CVD. The Specific Aims of the proposed research are to develop and evaluate: (1) Latent class and mixture modeling paradigms for (a) discovering and characterizing multi-locus genotype-trait associations and (b) evaluating unobservable haplotype-trait associations in candidate-gene investigations; and (2) Hierarchical mixture models and machine learning approaches for (a) monitoring quantitative biomarkers in resource-limited settings and (b) characterizing high- dimensional predictors of immune reconstitution and inflammation. IMPACT: This research will lead to the creation of appropriate and carefully evaluated analytic tools to derive information from the rich array of molecular and cellular data now available. Ultimately, this research will advance our ability to translate molecular and cellular level data for clinical decision making, serving at the cornerstone of personalized medicine.
描述(由申请人提供):最近的技术进步产生了大量的分子和细胞数据,为了解复杂的疾病病因和为临床管理策略提供了前所未有的机会。然而,为了从这些丰富的数据存储中获取信息,我们需要开发合理且适当的分析技术。这种需求在人类免疫缺陷病毒(HIV)和心血管疾病(CVD)交叉研究中尤其重要,其特点是病毒和宿主因素之间存在一系列复杂的相互作用。这些因素包括病毒和宿主遗传特征,以及热量代谢、免疫激活和炎症的标志物,它们共同决定对治疗的反应和整体疾病进展。由于存在大量潜在信息变量以及它们之间的关系很大程度上未表征,对这些标记的全面评估提出了一些分析挑战。我们提出了一项多方面的战略,重点关注综合统计方法的开发和应用。这些方法将使我们能够探索和表征与多种遗传、环境、人口和临床因素以及疾病进展测量之间的复杂关系相关的新假设。具体来说,该延续申请侧重于在两种情况下推进和应用统计方法:首先,我们考虑基于人群的先天免疫、脂肪因子、药物代谢和药物转运基因以及免疫重建、炎症和 CVD 风险标记物的遗传关联研究HIV感染者;其次,我们研究与免疫恢复、炎症和心血管疾病风险相关的代谢和免疫学特征。拟议研究的具体目标是开发和评估:(1)潜在类别和混合建模范式,用于(a)发现和表征多位点基因型-性状关联以及(b)评估候选基因中不可观察的单倍型-性状关联调查; (2) 分层混合模型和机器学习方法,用于 (a) 在资源有限的环境中监测定量生物标志物,以及 (b) 表征免疫重建和炎症的高维预测因子。影响:这项研究将导致创建适当且经过仔细评估的分析工具,以便从现有的丰富的分子和细胞数据中获取信息。最终,这项研究将提高我们将分子和细胞水平数据转化为临床决策的能力,成为个性化医疗的基石。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea S Foulkes其他文献

Andrea S Foulkes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea S Foulkes', 18)}}的其他基金

Statistical Methods in COVID-19/PASC Clinical Research
COVID-19/PASC 临床研究的统计方法
  • 批准号:
    10584243
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Center for Suicide Research and Prevention - Methods Core
自杀研究和预防中心 - 方法核心
  • 批准号:
    10575950
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
  • 批准号:
    10373610
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
  • 批准号:
    10523261
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
  • 批准号:
    10841987
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
Methods for integrated analysis of multi-level omics data
多层次组学数据综合分析方法
  • 批准号:
    9897639
  • 财政年份:
    2018
  • 资助金额:
    $ 38.09万
  • 项目类别:
Statistical methods for modeling multi-omic data
多组学数据建模的统计方法
  • 批准号:
    9441328
  • 财政年份:
    2017
  • 资助金额:
    $ 38.09万
  • 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
  • 批准号:
    10394765
  • 财政年份:
    2014
  • 资助金额:
    $ 38.09万
  • 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
  • 批准号:
    8995000
  • 财政年份:
    2011
  • 资助金额:
    $ 38.09万
  • 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
  • 批准号:
    8606493
  • 财政年份:
    2011
  • 资助金额:
    $ 38.09万
  • 项目类别:

相似国自然基金

草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
  • 批准号:
    72363025
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
  • 批准号:
    72374130
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
  • 批准号:
    11926407
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
  • 批准号:
    10594743
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
  • 批准号:
    10643633
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
  • 批准号:
    10643695
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
  • 批准号:
    10642307
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Understanding the Associations between Romantic Relationship Conflict, Psychophysiological Responding and Alcohol Misuse among Emerging Adults
了解新兴成年人浪漫关系冲突、心理生理反应和酒精滥用之间的关联
  • 批准号:
    10663691
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了