Neural mechanisms underlying circadian rhythms in behavior
行为昼夜节律的神经机制
基本信息
- 批准号:9258619
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneAblationActivity CyclesAddressAgingAnatomyBehaviorBehavior ControlBehavioralBiological AssayBiological ClocksBiological ProcessBrainBrain imagingBrain regionCationsCellsCircadian RhythmsCorticotropin-Releasing HormoneDataDisease susceptibilityDrosophila genusDrosophila melanogasterEnvironmentFunctional disorderG-Protein-Coupled ReceptorsGeneticGenetic TranscriptionGoalsHealthHourHumanHypothalamic structureImaging TechniquesKnowledgeLigandsLinkMeasuresMediatingMolecularMotor ActivityNeuromedin UNeuronsNeuropeptidesNeurosecretory SystemsOrthologous GeneOutputPeriodicityPhysiologyPotassium ChannelProcessRNA interference screenReporterReportingResearchRestSignal TransductionSiteSleep Wake CycleSystemTestingTimeTranslatingWorkbasebehavior testcircadian pacemakerexperimental studyflyin vivoin vivo imaginginsightinternal controlknock-downmutantnervous system disorderneural circuitneuromechanismneuroregulationpostsynaptic neuronspresynaptic neuronsreceptorreceptor bindingrelating to nervous systemresponsesensorshift worktherapeutic developmenttoolvesicular release
项目摘要
Project Abstract
The brain's circadian clock controls daily rhythms in physiology and behavior. Disruptions of circadian
rhythms with shift work are associated with many human health problems. In addition, behavioral rhythms are
often disrupted with aging and neurological disorders. Understanding the direct links between the circadian
system and specific biological processes and behaviors will provide insights into disease susceptibility. In
Drosophila melanogaster, we have a detailed understanding of the transcriptional oscillator mechanism and
the specific neurons that are necessary for generating 24-hour behavioral rhythms. However, little is known
about how circadian clocks communicate time-of-day information to output circuits controlling behaviors.
Recent work showed that clock neurons project to neurons in the pars intercerebralis (PI), a brain region
containing neurosecretory cells implicated in regulating various behaviors. PI neurons expressing DH44
neuropeptide are necessary for circadian rhythms of locomotor activity. In this proposal, I will leverage our
knowledge of this circadian output circuit to understand the mechanisms by which timing signals are translated
into behavioral rhythms.
In Aim 1, I will identify a mechanistic basis for rhythmic output from Dh44 neurons. Since the Dh44 neurons
and clock neurons have direct anatomical connections, I hypothesize that these connections provide a neural
substrate that regulates the diurnal neural activity of Dh44 neurons and DH44 neuropeptide signaling. To
address this, I will investigate how the circadian system regulates neural activity in and neuropeptide release
from Dh44 neurons and the signaling ability of DH44 itself. By identifying a mechanism for rhythmic output at
the level of DH44 signaling, we will gain insights into how this circuit encodes time-of-day information
downstream of clock neurons.
In Aim 2, I will determine the site of DH44 neuropeptide action. DH44 neuropeptide signals through its
receptors, DH44-R1 and DH44-R2. Preliminary data show that Dh44-R1 is the receptor required for normal
rest:activity rhythms. In Aim 2, I will identify the neurons where DH44-R1 is required. I will also establish
functional connectivity between Dh44 and downstream neurons with in vivo imaging techniques. Together, the
proposed experiments will elucidate the mechanisms by which DH44 neuropeptide signaling regulate a
circadian output circuit controlling rest:activity rhythms.
项目摘要
大脑的生物钟控制着生理和行为的日常节律。昼夜节律紊乱
轮班工作节奏与许多人类健康问题有关。此外,行为节奏是
经常因衰老和神经系统疾病而中断。了解昼夜节律之间的直接联系
系统以及特定的生物过程和行为将提供对疾病易感性的见解。在
果蝇,我们详细了解了转录振荡器机制并
产生 24 小时行为节律所必需的特定神经元。然而,鲜为人知
关于生物钟如何将一天中的时间信息传递给控制行为的输出电路。
最近的研究表明,时钟神经元投射到大脑间部 (PI) 的神经元,这是一个大脑区域
含有参与调节各种行为的神经分泌细胞。表达 DH44 的 PI 神经元
神经肽对于运动活动的昼夜节律是必需的。在这个提案中,我将利用我们的
了解该昼夜节律输出电路,以了解定时信号转换的机制
进入行为节奏。
在目标 1 中,我将确定 Dh44 神经元节律输出的机制基础。由于 Dh44 神经元
并且时钟神经元具有直接的解剖学连接,我假设这些连接提供了神经元
调节 Dh44 神经元和 DH44 神经肽信号传导的昼夜神经活动的底物。到
为了解决这个问题,我将研究昼夜节律系统如何调节神经活动和神经肽释放
来自 Dh44 神经元和 DH44 本身的信号传导能力。通过识别有节奏的输出机制
DH44 信号水平,我们将深入了解该电路如何编码时间信息
时钟神经元的下游。
在目标 2 中,我将确定 DH44 神经肽的作用位点。 DH44 神经肽通过其信号
受体,DH44-R1 和 DH44-R2。初步数据显示Dh44-R1是正常细胞所需的受体
休息:活动节奏。在目标 2 中,我将识别需要 DH44-R1 的神经元。我还将建立
通过体内成像技术,Dh44 和下游神经元之间的功能连接。在一起,
拟议的实验将阐明 DH44 神经肽信号传导调节的机制
昼夜节律输出电路控制休息:活动节律。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna King其他文献
Anna King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatiotemporal regulation of polyploidy in zebrafish cardiac tissue regeneration
斑马鱼心脏组织再生中多倍体的时空调控
- 批准号:
10736051 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Circadian regulation of brain and body in larval zebrafish
斑马鱼幼体大脑和身体的昼夜节律调节
- 批准号:
10798875 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别: