Airway Epithelial Barrier Dysfunction In Response to Respiratory Syncytial Virus
呼吸道合胞病毒引起的气道上皮屏障功能障碍
基本信息
- 批准号:8990806
- 负责人:
- 金额:$ 17.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAddressAdherenceAdultAdvisory CommitteesAffectApicalBiological AssayBiologyBreathingBronchiolitisCause of DeathCell Culture TechniquesCell LineCell physiologyCellsChildChildhoodComplexCytoskeletonDataDedicationsDevelopmentDevelopment PlansDiagnosisDiseaseDouble-Stranded RNAElderlyElementsEndocytosisEndocytosis PathwayEpithelialEpithelial CellsFoundationsFunctional disorderGoalsHumanImmune responseImmune systemImmunologyIn VitroInfantInfectionInflammation MediatorsInflammatory ResponseInjuryKnowledgeLaboratoriesLeadershipLife Cycle StagesLower Respiratory Tract InfectionLungLung InflammationLung diseasesMannitolMediatingMentorsMentorshipModelingMolecularMonitorMorbidity - disease rateMucous body substanceMusPathogenesisPathologyPathway interactionsPermeabilityPhysiciansProductivityPublicationsQuality of lifeRegulationReportingResearchResearch ProposalsRespiratory Syncytial Virus InfectionsRespiratory Tract InfectionsRespiratory syncytial virusRoleScientistSignal PathwaySignal TransductionSignaling ProteinSourceStructureSurfaceTLR3 geneTestingTherapeuticTight JunctionsTimeLineTissuesToll-like receptorsTrainingTranslatingUnited StatesUniversitiesViralViral Respiratory Tract InfectionVirusVirus DiseasesVirus Replicationairway epitheliumairway inflammationcareercareer developmentclinically relevantclinically significantcollaborative environmentdesignhelicasehigh riskimprovedin vitro Modelin vivoinnovationinsightmortalitymouse modelnew therapeutic targetnext generationnovelpathogenpediatric departmentprotein complexprotein kinase Dpublic health relevanceresearch studyrespiratoryrespiratory virusresponseskillstoolvirology
项目摘要
DESCRIPTION (provided by applicant): Recent studies indicate that respiratory viruses, including Respiratory Syncytial Virus (RSV), disrupt epithelial barrier structure and function, but
the mechanisms involved and consequences for airway inflammation remains poorly understood. The long-term goal of our studies is to better understand how airway epithelial cell barrier structure and function are affected by viral infection and how modifying the involved mechanisms restore barrier integrity and dampen inflammatory responses. Our recent publication revealed that, in cell culture, RSV infection caused disruption of tight junction structure and function. Our objective in this particular application is to investigate the molecula mechanism and signaling pathways involved in RSV-induced barrier disruption. The strength of our approach is that we utilize four highly complementary models including a well-characterized and manipulable human bronchial epithelial cell line, primary human and mouse airway epithelial cells, and cutting-edge mouse models; each serves to examine different key aspects of proposed mechanisms. The central hypothesis is that RSV infection prompts airway epithelial barrier dysfunction via endocytosis of apical junctional complexes (AJC) in a Protein Kinase D (PKD)-dependent manner. Guided by strong preliminary data, this hypothesis will be tested by pursuing two specific aims: 1) Test the hypothesis that PKD- dependent endocytosis is essential for RSV-induced airway epithelial barrier dysfunction; 2) Test the hypothesis that RSV causes sustained "leaky airway" in a PKD-dependent manner. In Aim 1, we will elucidate endocytic pathways, cytoskeleton remodeling, and PKD activation triggered by RSV. In Aim 2, we will use a well-characterized mouse model of wild type, and cutting-edge conditional deletion of PKD to investigate association of junction dysfunction, lung inflammation, and viral replication. Our proposal is innovative because it is the first comprehensive analysis of role of RSV infection and PKD pathway in the lung. Furthermore, it will provide an innovative assay of outside/in airway permeability by using inhaled mannitol, which has strong translational potential. The proposed research is significant, because it will provide essential knowledge about a clinically relevant virus with poorly understood pathogenesis. The overall K08 application is designed to build a foundation of technical, intellectual and leadership skills required to transition into independence. The career development plan will help me strengthen my knowledge in virology, and barrier immunology, develop expertise in studying cell signaling, and endocytosis, acquire essential skills in utilizing genetically modified mice, and define my niche as an independent physician scientist in the field of respiratory biology. My mentors and advisory committee will monitor adherence to the detailed productivity and developmental progress timeline. My commitments to a research career, strong mentorship, unique dedication of Pediatrics Department in training the next generation of physician-scientists, and outstanding collaborative environment for respiratory virus research at the University of Rochester will provide the necessary tools with which I can build my career.
描述(由申请人提供):最近的研究表明,呼吸道病毒,包括呼吸道合胞病毒(RSV),会破坏上皮屏障结构和功能,但
我们对气道炎症的相关机制和后果仍知之甚少,我们研究的长期目标是更好地了解病毒感染如何影响气道上皮细胞屏障结构和功能,以及如何修改相关机制恢复屏障完整性并抑制炎症反应。我们最近发表的文章表明,在细胞培养中,RSV 感染会导致紧密连接结构和功能的破坏。我们在这一特定应用中的目标是研究 RSV 诱导的屏障破坏所涉及的分子机制和信号通路。我们利用的四个高度互补的模型,包括特征明确且可操作的人类支气管上皮细胞系、原代人类和小鼠气道上皮细胞以及尖端小鼠模型;每个模型都用于检查所提出机制的不同关键方面。以蛋白激酶 D (PKD) 依赖性方式通过顶端连接复合物 (AJC) 的内吞作用提示气道上皮屏障功能障碍,在强有力的初步数据的指导下,这一假设将得到检验。通过追求两个具体目标:1) 检验 PKD 依赖性内吞作用对于 RSV 诱导的气道上皮屏障功能障碍至关重要的假设;2) 检验 RSV 以 PKD 依赖性方式导致持续“气道渗漏”的假设。 ,我们将阐明 RSV 触发的内吞途径、细胞骨架重塑和 PKD 激活。在目标 2 中,我们将使用已充分表征的野生型小鼠模型,我们的建议是创新的,因为它是对 RSV 感染和 PKD 通路在肺部的作用的首次全面分析。通过使用吸入甘露醇进行气道内外通透性的创新测定,该研究具有很强的转化潜力,因为它将提供有关临床相关病毒的基本知识,而该病毒的发病机制尚不清楚。职业发展计划将帮助我加强病毒学和屏障免疫学方面的知识,培养研究细胞信号传导和内吞作用的专业知识,获得在转基因小鼠中使用的基本技能。 ,并将我的定位定义为呼吸生物学领域的独立医师科学家,我的导师和顾问委员会将坚持监控我对研究生涯的承诺、强有力的指导和儿科的独特奉献。在培养下一代罗切斯特大学的医师科学家以及出色的呼吸道病毒研究协作环境将为我建立职业生涯提供必要的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fariba Rezaee其他文献
Fariba Rezaee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fariba Rezaee', 18)}}的其他基金
Mechanisms of Airway Epithelial Barrier Dysfunction by Respiratory Syncytial Virus and Environmental Stimuli
呼吸道合胞病毒和环境刺激导致气道上皮屏障功能障碍的机制
- 批准号:
10657436 - 财政年份:2019
- 资助金额:
$ 17.63万 - 项目类别:
Mechanisms of Airway Epithelial Barrier Dysfunction by Respiratory Syncytial Virus and Environmental Stimuli
呼吸道合胞病毒和环境刺激导致气道上皮屏障功能障碍的机制
- 批准号:
10443817 - 财政年份:2019
- 资助金额:
$ 17.63万 - 项目类别:
Mechanisms of Airway Epithelial Barrier Dysfunction by Respiratory Syncytial Virus and Environmental Stimuli
呼吸道合胞病毒和环境刺激导致气道上皮屏障功能障碍的机制
- 批准号:
10208949 - 财政年份:2019
- 资助金额:
$ 17.63万 - 项目类别:
Airway Epithelial Barrier Dysfunction In Response to Respiratory Syncytial Virus
呼吸道合胞病毒引起的气道上皮屏障功能障碍
- 批准号:
9190362 - 财政年份:2015
- 资助金额:
$ 17.63万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 17.63万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 17.63万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 17.63万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 17.63万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 17.63万 - 项目类别: