Modeling the role of the genome in chemotherapy induced cardiotoxicity using iPSC
使用 iPSC 模拟基因组在化疗引起的心脏毒性中的作用
基本信息
- 批准号:9330916
- 负责人:
- 金额:$ 24.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): This proposal describes a five-year career development program to prepare the candidate, Dr. Paul Burridge, for a career as an independent investigator. This program will build on Dr. Burridge's background as a stem cell biologist by providing expertise in molecular cardiology and pharmacogenomics. The mentor is Dr. Joseph Wu, a Professor of Medicine/Cardiology and Director of the Stanford Cardiovascular Institute at Stanford University. The proposed mentor is a physician scientist with significant expertise in stem cell biology and is an expert in cardiovascular disease modeling. The K99 phase will consist of structured mentorship by the primary mentor, complementary meetings with the advisory committee, formal coursework, a provocative research project, and a program of career transition. Doxorubicin is a well-established and highly effective chemotherapy drug commonly used to treat multiple cancers such as lymphoma, leukemia, ovary, lung and breast cancer, but its use is limited by a serious side effect: doxorubicin causes toxicity in cardiomyocytes, causing damage to the heart. Cardiotoxicity can range from asymptomatic reductions in left ventricular ejection fraction (LVEF) to highly symptomatic (Class III to Class I) heart failure. Acute doxorubicin-induced cardiotoxicity occurs in ~11% of patients and long-term cardiotoxic side effects, which can manifest up to 10 years after treatment, are observed in up to 36% of patients. Currently we cannot predict which patients will develop cardiotoxicity and, at present, oncologists do not assess patient-specific genomic data before deciding on doxorubicin dose. Existing strategies for reducing doxorubicin-induced cardiotoxicity (DIC) include (i) reducing dose, potentially reducing chemotherapeutic effectiveness, (ii) development of less cardiotoxic anthracycline analogues, or (iii) co- treatment with a cardioprotective agents such as dexrazoxane, although this has not proven effective and is not currently endorsed by the American Society for Clinical Oncology outside of clinical trials. A major hurdle in filling the significant gaps in our knowledge about the mechanisms of cardiotoxicity and how best to prevent it has been that there are no good human models, due to the inaccessibility of adult human cardiomyocyte patient samples, and the difficulty in isolating and maintaining cardiomyocytes in vitro. Animal models are limited by significant functional disparities between animal and human cardiomyocytes. This hurdle has now been overcome by the recent advances in the generation of human induced pluripotent stem cells (hiPSCs) where a patient's somatic cells can be reprogrammed to pluripotency and maintained indefinitely in vitro. These pluripotent cells can then be efficiently differentiated into cardiomyocytes and further studied in
detail. In preliminary studies, Dr. Burridge has developed and validated a set of tools for assessing DIC in hiPSC-derived cardiomyocytes (hiPSC-CMs). Dr. Burridge has established that hiPSC-CMs, derived from patients who have developed DIC, accurately recapitulate the susceptibility phenotype in vitro. By meta-analysis of single nucleotide polymorphism (SNP) studies in patients, generated by our collaborators and others, Dr. Burridge has identified SNPs in two genes that are predicted to be highly associated with DIC (P=10-9 or 10-5). However, before any SNP can be utilized in clinical practice, its validity must be confirmed through studies
linking that SNP to a mechanism for DIC. In this proposal Dr. Burridge intends to use the hiPSC-CM model to perform detailed characterization of the function of these genes identified through SNP studies in DIC. During the K99 phase Dr. Burridge will generate hiPSC lines with the two highest probability candidate SNPs (Aim 1). Dr. Burridge will then use the assays established in the pilot study to assess the effect of these SNPs on susceptibility to DIC and also isogenic hiPSC lines genetically modified to over-express or knock- down the whole genes identified to confirm the mechanism of each gene variant (Aim 2). During the R00 phase Dr. Burridge will expand this work to validate 15 additional high-risk SNP hits (Aim 3) to ultimately develop a high-throughput platform for screening cardiotoxicity of novel anthracycline analogues and cardioprotective agents in a patient-specific manner (Aim 4). The overall aim of this proposal is to use patient-specific hiPSC-CMs to help elucidate the mechanisms through which these SNPs affect cardiotoxicity. Dr. Burridge's ultimate goal is to use this information to develop novel therapeutic modalities for the prediction and prevention of chemotherapy-induced cardiotoxicity. In addition, this work will provide a foundation for future studies using patient-specific hiPSC to
study the mechanism of other chemotherapeutic agents with cardiac toxicity, e.g. tyrosine kinase inhibitors, to eventually be carried out by Dr. Burridge as an independent investigator.
描述(由申请人提供):该提案描述了一项为期五年的职业发展计划,以准备候选人保罗·伯里奇(Paul Burridge)博士作为独立调查员的职业。该计划将通过提供分子心脏病学和药物基因组学专业知识来基于Burridge博士作为干细胞生物学家的背景。这位导师是医学/心脏病学教授,斯坦福大学斯坦福大学的主任约瑟夫·吴(Joseph Wu)博士。拟议的导师是一名医生科学家,在干细胞生物学方面具有重要的专业知识,并且是心血管疾病建模的专家。 K99阶段将由主要导师,与咨询委员会,正式课程,挑衅性研究项目和职业过渡计划的互补会议组成的结构化指导。 阿霉素是一种公认且高效的化学疗法药物,通常用于治疗多种癌症,例如淋巴瘤,白血病,卵巢,肺癌和乳腺癌,但其使用受到严重的副作用的限制:阿霉素引起心脏造成毒性的毒性,导致心脏损害心脏。心脏毒性的范围从左心室射血分数(LVEF)的无症状减少到高度症状(III级到I级)心力衰竭。急性阿霉素诱导的心脏毒性发生在约11%的患者中,长期心脏毒性副作用可在治疗后长达10年,在多达36%的患者中观察到。目前,我们无法预测哪些患者会发展出心脏毒性,目前,肿瘤学家在决定阿霉素剂量之前尚未评估患者特定的基因组数据。 Existing strategies for reducing doxorubicin-induced cardiotoxicity (DIC) include (i) reducing dose, potentially reducing chemotherapeutic effectiveness, (ii) development of less cardiotoxic anthracycline analogues, or (iii) co- treatment with a cardioprotective agents such as dexrazoxane, although this has not proven effective and is not currently endorsed by the American Society for Clinical Oncology outside临床试验。 填补我们关于心脏毒性机制的巨大差距以及如何最好地预防它的主要障碍,这是由于成人人类心肌细胞患者样本的无法访问,以及在体外隔离和维持心肌细胞的难度。动物模型受动物和人类心肌细胞之间的显着功能差异的限制。现在,通过人类诱导的多能干细胞(HIPSC)的最新进展克服了这一障碍,在该过程中,患者的体细胞可以重编程为多能性并无限期地维持体外。然后,这些多能细胞可以有效地分化为心肌细胞,并进一步研究
细节。 在初步研究中,Burridge博士已经开发并验证了一组评估HIPSC衍生心肌细胞(HIPSC-CMS)中DIC的工具。 Burridge博士确定,源自开发DIC的患者的HIPSC-CMS准确地概括了体外的敏感性表型。通过对我们的合作者和其他人产生的患者的单核苷酸多态性(SNP)研究的荟萃分析,Burridge博士在两个基因中鉴定了两个基因的SNP,这些SNP与DIC高度相关(p = 10-9或10-5)。但是,在临床实践中使用任何SNP之前,必须通过研究确认其有效性
将SNP与DIC机制联系起来。在该提案中,Burridge博士打算使用HIPSC-CM模型对通过DIC中的SNP研究识别的这些基因的功能进行详细表征。 在K99阶段,Burridge博士将生成具有两个最高概率候选SNP的HIPSC线(AIM 1)。然后,Burridge博士将使用试点研究中建立的测定法来评估这些SNP对DIC易感性的影响,并在基因改性或敲低的整个基因中识别出确定每个基因变异机制的机制(AIM 2)。在R00阶段,Burridge博士将扩大这项工作,以验证15个额外的高风险SNP命中(AIM 3),最终以患者特异性的方式开发了一个高通量平台,以筛选新型的Anthracycline类似物和心脏保护药的心脏毒性(AIM 4)。该提案的总体目的是使用特定于患者的HIPSC-CMS来帮助阐明这些SNP影响心脏毒性的机制。 Burridge博士的最终目标是使用这些信息来开发新的治疗方式,以预测和预防化学疗法诱导的心脏毒性。此外,这项工作将为将来使用患者特异性HIPSC的研究提供基础
研究其他具有心脏毒性的化学治疗剂的机制,例如酪氨酸激酶抑制剂最终由伯里奇博士作为独立研究员进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Paul W. Burridge的其他基金
Predicting and Preventing Chemotherapy-Induced Cardiotoxicity in African American Children
预测和预防非裔美国儿童化疗引起的心脏毒性
- 批准号:1046268010462680
- 财政年份:2021
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Predicting and Preventing Chemotherapy-Induced Cardiotoxicity in African American Children
预测和预防非裔美国儿童化疗引起的心脏毒性
- 批准号:1067550310675503
- 财政年份:2021
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Predicting and Preventing Chemotherapy-Induced Cardiotoxicity in African American Children
预测和预防非裔美国儿童化疗引起的心脏毒性
- 批准号:1027532910275329
- 财政年份:2021
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
HiDef B8: Commercialization and scaled production of defined, robust, and cost-effective media for iPSCs
HiDef B8:用于 iPSC 的明确、稳健且经济高效的介质的商业化和规模化生产
- 批准号:1040555610405556
- 财政年份:2021
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
HiDef B8: Commercialization and scaled production of defined, robust, and cost-effective media for iPSCs
HiDef B8:用于 iPSC 的明确、稳健且经济高效的介质的商业化和规模化生产
- 批准号:1025539210255392
- 财政年份:2021
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Genomic Prediction of Doxorubicin-Induced Cardiotoxicity
阿霉素引起的心脏毒性的基因组预测
- 批准号:1045631210456312
- 财政年份:2018
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Genomic Prediction of Doxorubicin-Induced Cardiotoxicity
阿霉素引起的心脏毒性的基因组预测
- 批准号:1052409210524092
- 财政年份:2018
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Genomic Prediction of Doxorubicin-Induced Cardiotoxicity
阿霉素引起的心脏毒性的基因组预测
- 批准号:1022868310228683
- 财政年份:2018
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Assessing the ability of hiCMs to recapitulate patient-specific doxorubicin-induced cardiotoxicity
评估 hiCM 重现患者特异性阿霉素引起的心脏毒性的能力
- 批准号:1027414910274149
- 财政年份:2018
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Modeling the role of the genome in chemotherapy induced cardiotoxicity using iPSC
使用 iPSC 模拟基因组在化疗引起的心脏毒性中的作用
- 批准号:91302339130233
- 财政年份:2015
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
相似海外基金
The Role of Norovirus Interactions with the Epithelial Barrier in Acute Gastroenteritis
诺如病毒与上皮屏障相互作用在急性胃肠炎中的作用
- 批准号:1067978810679788
- 财政年份:2023
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Modeling the role of the genome in chemotherapy induced cardiotoxicity using iPSC
使用 iPSC 模拟基因组在化疗引起的心脏毒性中的作用
- 批准号:91302339130233
- 财政年份:2015
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Intestinal Bile Acid Transport in EPEC Infection
EPEC 感染中的肠道胆汁酸转运
- 批准号:74996887499688
- 财政年份:2007
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Intestinal Bile Acid Transport in EPEC Infection
EPEC 感染中的肠道胆汁酸转运
- 批准号:76684247668424
- 财政年份:2007
- 资助金额:$ 24.63万$ 24.63万
- 项目类别:
Intestinal Bile Acid Transport in EPEC Infection
EPEC 感染中的肠道胆汁酸转运
- 批准号:73330177333017
- 财政年份:2007
- 资助金额:$ 24.63万$ 24.63万
- 项目类别: