MECHANISMS OF CHROMATIN REMODELING PROMOTING AXON REGENERATION
染色质重塑促进轴突再生的机制
基本信息
- 批准号:9328185
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcuteAffectAfferent NeuronsAxonBackBreathingCalcineurinCalciumCalcium OscillationsCell LineCellsChromatinCompetenceEP300 geneEpigenetic ProcessEventExhibitsFailureFutureGene ExpressionGene TargetingGenesGenetic TranscriptionGoalsGrantGrowthHDAC5 geneHistone AcetylationHistone DeacetylaseHistonesHumanHypoxiaHypoxia Inducible FactorIndividualInjuryJUN geneLaboratoriesLinkMediatingMedicalModelingMolecularMusNatural regenerationNerve CrushNervous System PhysiologyNeuraxisNeurobiologyNeuronal HypoxiaNeuronsNuclearNuclear ImportOptic NerveOptic Nerve InjuriesOxygenPathway interactionsPatientsPeripheralPhosphorylationPlayProblem SolvingRecovery of FunctionRegenerative responseReportingRetinal Ganglion CellsRoleSTAT3 geneSignal PathwaySignal TransductionSiteSpinal GangliaTestingTimeTranscriptional ActivationTransferaseWorkaxon injuryaxon regenerationbasecentral nervous system injurychromatin modificationchromatin remodelingdisabilityepigenetic regulationexperimental studyfilaminhistone modificationinjuredinsightneurological recoverynovelprogramsregenerativerelating to nervous systemrepairedresponseresponse to injurysciatic nervesuccesstranscription factortreatment strategy
项目摘要
ABSTRACT
Lack of robust axonal regeneration represents a major barrier to functional recovery following injury to
neurons within the central nervous system (CNS). In contrast, peripheral neurons can regenerate after injury.
Activation of a pro-regenerative growth program in peripheral neurons relies on the expression of
regeneration-associated genes (RAGs) that allow for robust axonal re-growth. Although several genes have
been identified for their pro-regenerative influence, individual gene based approaches have yielded limited
success in axon regeneration, illustrating that manipulation of individual RAGs is unlikely to be sufficient to
stimulate robust long-distance axon regeneration in the injured CNS. Therefore, understanding how a large
ensemble of RAGs can be simultaneously activated after injury could reveal strategies to initiate the
transcriptional pro-regenerative program. Epigenetic regulations, which include modification of the chromatin,
affect combinations of multiple genes and hence represent ideal strategies to promote neural repair. Our goal
is to gain new insights into the molecular events that regulate chromatin function in response to injury in
peripheral neurons, and identify potential targets for future treatment of CNS injuries
We previously demonstrated that axon injury elicits an epigenetic switch stimulating the regenerative
competence of sensory neurons. Specifically, we discovered that calcium wave back-propagating from the
site of axonal injury increases histone acetylation levels, stimulating the regenerative competence of sensory
neuron. This work demonstrates a link between axon injury and chromatin remodeling and suggests that a
coordinated pro-regenerative program is initiated by changes in the epigenetic landscape. In our recent
studies, we identified hypoxia-inducible factor 1α (HIF-1α) as an important factor regulating axon
regeneration via epigenetic as well as transcriptional regulatory mechanisms. We found that HIF-1α is
required in injured sensory neurons to increase histone acetylation levels, to stimulate the expression of pro-
regenerative genes and to promote axon regeneration. In mice breathing repeatedly low oxygen levels for
brief periods (i.e., acute intermittent hypoxia, AIH) we observed increased levels of HIF-1α and enhanced
axon regeneration in sensory neurons. However, the signaling pathways in normoxic conditions regulating
HIF-1α accumulation and the precise mechanisms by which HIF-1α regulates chromatin in injured neurons
remain elusive. Here we propose to uncover the molecular mechanisms controlling HIF-1α stability and
activity following injury and to establish its specific roles in chromatin remodeling in injured neurons. We will
also test if AIH can recapitulate at least in part the epigenetic changes elicited by peripheral axon injury and
activate a pro-regenerative program in both peripheral and central neurons. This proposal has the potential to
provide further rationale for the improvement of AIH-based treatment strategies for human patients.
.
抽象的
缺乏健壮的轴突再生代表了受伤后功能恢复的主要障碍
中枢神经系统(CNS)中的神经元。相反,受伤后周围神经元可以再生。
激活周围神经元中的促增长增长计划取决于表达
再生相关基因(RAGS),可实现稳健的轴突重新生长。虽然几个基因有
因其促进影响而被鉴定出来,基于基因的方法产生了有限
在轴突再生方面的成功,说明对单个抹布的操纵不可能足够
刺激受伤的中枢神经系统中强大的长距离轴突再生。因此,了解一个大型
抹布的合奏可以在受伤后简单地激活,可以揭示策略来发起
转录亲获得计划。表观遗传法规,其中包括染色质的修饰,
影响多个基因的组合,因此代表了促进神经修复的理想策略。我们的目标
是为了获得调节染色质功能的分子事件的新见解
周围神经元,并确定未来治疗中枢神经系统损伤的潜在靶标
我们先前证明了轴突损伤引起的表观遗传开关刺激了再生
感觉神经元的能力。具体来说,我们发现钙波从
轴突损伤部位增加组蛋白乙酰化水平,刺激感觉的再生能力
神经元。这项工作证明了轴突损伤与染色质重塑之间的联系,并建议
协调的亲获得计划是由表观遗传景观的变化启动的。在我们的最新消息中
研究,我们将低氧诱导因子1α(HIF-1α)确定为调节轴突的重要因子
通过表观遗传和转录调节机制再生。我们发现HIF-1α是
在受伤的感觉神经元中需要增加组蛋白乙酰化水平,以刺激促进的表达
再生基因并促进轴突再生。在呼吸反复低的氧气水平中
短期(即急性间歇性缺氧,AIH),我们观察到HIF-1α的水平增加,并增强了
感觉神经元中的轴突再生。但是,调节常氧条件下的信号通路
HIF-1α的积累和HIF-1α调节受伤神经元中染色质的精确机制
保持难以捉摸。在这里,我们建议发现控制HIF-1α稳定性和的分子机制
损伤后的活性并确定其在受伤神经元中染色质重塑中的特定作用。我们将
还测试AIH是否至少可以在某种程度上概括。
激活外围和中央神经元中的亲再生程序。该提议有可能
为改善人类患者的基于AIH的治疗策略提供了进一步的理由。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Cavalli其他文献
Valeria Cavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Cavalli', 18)}}的其他基金
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10593846 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
2022 Cell Biology of the Neuron Gordon Research Conference and Gordon ReSeminar
2022年神经元细胞生物学戈登研究会议和戈登再研讨会
- 批准号:
9992131 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10406343 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10238542 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10624855 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
9913648 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
10061654 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
ELUCIDATING THE ROLE OF NEURONAL MTOR SIGNALING IN SCHWANN CELL DEVELOPMENT
阐明神经元 MTOR 信号转导在施万细胞发育中的作用
- 批准号:
9387143 - 财政年份:2017
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
组蛋白乙酰化修饰介导Hint2调控NETosis对急性肝衰竭的影响及机制研究
- 批准号:82270627
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
组蛋白乙酰化修饰介导Hint2调控NETosis对急性肝衰竭的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于非组蛋白乙酰化修饰探讨GSK3β/ULK1通路调控线粒体自噬对急性肝衰竭能量代谢的影响
- 批准号:82070609
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
组蛋白去乙酰化酶介导的自噬-NLRP3炎症小体轴对急性肝衰竭细胞焦亡途径的影响
- 批准号:81870413
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
自噬应激对脊髓急性损伤和修复的影响及其调控机制的研究
- 批准号:81301059
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Opioid-Induced Epigenetic Mechanisms in Glaucoma
阿片类药物诱导的青光眼表观遗传机制
- 批准号:
10563745 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10917559 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别: