The physiological role of RIPK3-dependent necroptosis
RIPK3依赖性坏死性凋亡的生理作用
基本信息
- 批准号:9193610
- 负责人:
- 金额:$ 44.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAlpha CellAntigen-Presenting CellsAntigensApoptosisApoptoticAutoimmune DiseasesAutomobile DrivingBacterial InfectionsBacterial ModelBacterial ToxinsBindingBioavailableCASP8 geneCaspase InhibitorCell DeathCell LineCell SurvivalCellsCessation of lifeChemicalsComplexEmergency SituationEventEvolutionGenesGeneticGenetic TranscriptionGrowthImmuneImmune responseImmune signalingImmune systemInfectionInflammatoryLeadLigationMalignant NeoplasmsMammalian CellManipulative TherapiesMediatingMessenger RNAModelingNF-kappa BNecrosisOutcomePathologicPathway interactionsPeptide HydrolasesPhagocytesPharmaceutical PreparationsPhosphorylationPhosphotransferasesPhysiologicalPlayProcessProtein InhibitionProtein Synthesis InhibitionProteinsRIPK3 geneReceptor SignalingRoleSignal TransductionSignaling MoleculeStressSystemT cell responseTNF geneTNFRSF1A geneTertiary Protein StructureTestingTissuesToll-like receptorsTranscriptional ActivationTranslationsUp-RegulationVirusVirus DiseasesVirus InhibitorsWorkadaptive immune responsecell typecellular sensitizationcytokinein vivoinhibitor/antagonistinsightinterestnovelparalogous genepreventprogramspublic health relevanceresponsetherapy designtooltumor progression
项目摘要
DESCRIPTION (provided by applicant): Tumor Necrosis Factor-� (TNF) and Toll-like receptor (TLR) signaling play key roles in coordinating immune responses, by driving the transcriptional activation of pro-inflammatory genes. However, it has long been recognized that they can also trigger apoptotic cell death. More recently, it has been shown that these signals can also induce another form of programmed cell death, called "necroptosis." While the discovery of necroptosis has generated considerable interest, the physiological role of this alternate cell death program remains elusive. In particular, necroptosis is blocked by the pro-apoptotic protease caspase-8, so most studies rely on genetic ablation or chemical inhibition of caspase-8 to trigger necroptosis. This raises a question: when does TNF or TLR-mediated necroptosis occur under physiological conditions? We have shown that caspase-8 must act in concert with its paralog FLIP to block necroptosis, and FLIP is potently up-regulated by TNF and TLR transcriptional signaling. Many types of infection and stress lead to inhibition of inflammatory signaling or general inhibition of protein synthesis. We therefore propose that the absence of FLIP-rather than inhibition of caspase-8-provides a general mechanism for cellular sensitization to necroptosis. We further hypothesize that necroptosis is itself inflammatory, because cells dying by necroptosis release damage- associated signaling molecules that activate immune cells. To address this possibility, we will focus on three specific questions: 1) How is the pro-necroptotic kinase RIPK3 activated, and how is this activation suppressed by caspase-8/FLIP? We have created a system in which multiple steps of RIPK3 can be controlled. We will use this system to test the hypothesis that RIPK3 activation requires phosphorylation- dependent assembly and propagation of a RIPK3 oligomer, and that caspase-8/FLIP directly blocks this process. 2) How is suppression of caspase-8/FLIP relieved to allow necroptosis under physiological conditions? We hypothesize that inhibitors of NF-kB signaling, or of general protein translation, sensitize cells to necroptosis by preventing FLIP expression. We will test this model in multiple cell types using pathologically relevant models of bacterial and viral infection, as well as ER stress. We will also consider how FLIP levels are controlled at both mRNA and protein levels. 3) How does the immune system respond to necroptotic vs. apoptotic cell death? We hypothesize that the mechanism by which a cell dies is important, because necroptosis releases inflammatory molecules that are contained or eliminated during apoptosis. To test this idea, we have created a system that allows us to trigger apoptosis or necroptosis using a non-toxic drug. We will use this system to analyze innate and adaptive immune responses to cell death. Together, the work proposed here seeks to understand the causes and consequences of necroptosis in vivo, and to thereby allow rational design of therapies that manipulate this process in infection, autoimmune disease, and cancer.
描述(由申请人提供):肿瘤坏死因子-α (TNF) 和 Toll 样受体 (TLR) 信号传导通过驱动促炎基因的转录激活在协调免疫反应中发挥关键作用。然而,人们早已认识到这一点。最近,研究表明这些信号还可以诱导另一种形式的程序性细胞死亡,称为“坏死性凋亡”。有趣的是,这种替代细胞死亡程序的生理作用仍然难以捉摸,特别是,坏死性凋亡被促凋亡蛋白酶 caspase-8 阻断,因此大多数研究依赖 caspase-8 的基因消融或化学抑制来引发坏死性凋亡。问题:在生理条件下,TNF 或 TLR 介导的坏死性凋亡何时发生?我们已经证明 caspase-8 必须与其旁系同源物 FLIP 协同作用才能阻断?坏死性凋亡,并且 FLIP 受到 TNF 和 TLR 转录信号传导的有效上调。许多类型的感染和应激会导致炎症信号传导的抑制或蛋白质合成的全面抑制,因此我们认为,FLIP 的缺失而不是 caspase 的抑制。 8-提供了细胞对坏死性凋亡敏感的一般机制,我们进一步发现坏死性凋亡本身就是炎症性的,因为因坏死性凋亡而死亡的细胞会释放激活免疫的损伤相关信号分子。为了解决这种可能性,我们将重点关注三个具体问题:1)促坏死性激酶 RIPK3 是如何被激活的,以及 caspase-8/FLIP 是如何抑制这种激活的?我们将使用该系统来测试 RIPK3 激活需要磷酸化依赖性 RIPK3 寡聚体的组装和增殖以及 caspase-8/FLIP 直接的假设。 2) caspase-8/FLIP 的抑制是如何缓解的,从而在生理条件下发生坏死性凋亡?使用细菌和病毒感染的病理相关模型以及 ER 应激在多种细胞类型中测试该模型,我们还将考虑如何在 mRNA 和蛋白质水平上控制 FLIP 水平。免疫系统对坏死性细胞死亡和凋亡性细胞死亡有反应吗?我们认为细胞死亡的机制很重要,因为坏死性凋亡会释放在细胞凋亡过程中被抑制或消除的炎症分子。允许我们使用无毒药物引发细胞凋亡或坏死性凋亡。我们将使用该系统来分析对细胞死亡的先天性和适应性免疫反应,本文提出的工作旨在了解坏死性凋亡的原因和后果。体内,从而允许合理设计在感染、自身免疫性疾病和癌症中操纵这一过程的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Atwell Oberst其他文献
Andrew Atwell Oberst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Atwell Oberst', 18)}}的其他基金
"Survivor" neurons drive persistent inflammation following West Nile virus infection
西尼罗河病毒感染后,“幸存者”神经元驱动持续炎症
- 批准号:
10731043 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别:
Activation of inflammatory programmed cell death by SARS-CoV-2
SARS-CoV-2 激活炎症性程序性细胞死亡
- 批准号:
10615162 - 财政年份:2022
- 资助金额:
$ 44.29万 - 项目类别:
Activation of inflammatory programmed cell death by SARS-CoV-2
SARS-CoV-2 激活炎症性程序性细胞死亡
- 批准号:
10450286 - 财政年份:2022
- 资助金额:
$ 44.29万 - 项目类别:
The Role of the RIP Kinases in Coordinating Neuroinflammation and Host Defense
RIP 激酶在协调神经炎症和宿主防御中的作用
- 批准号:
10326792 - 财政年份:2018
- 资助金额:
$ 44.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Defining the role of Wnt11 and Wnt5a in regulating hematopoietic and skeletal stem cell self-renewal potential during homeostasis and stress
定义 Wnt11 和 Wnt5a 在稳态和应激过程中调节造血和骨骼干细胞自我更新潜力的作用
- 批准号:
10731650 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别:
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别:
Fibroadipogenic progenitor cells as drivers of angiogenesis during muscle regeneration
纤维脂肪祖细胞作为肌肉再生过程中血管生成的驱动因素
- 批准号:
10741438 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别:
Pancreatic alpha-cells and Maternal metabolic Adaptation
胰腺α细胞和母体代谢适应
- 批准号:
10681909 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别: