Harnessing "omics": A Systems Biology approach to discovery of biological pathways in placental development and parturition
利用“组学”:系统生物学方法发现胎盘发育和分娩的生物途径
基本信息
- 批准号:9302935
- 负责人:
- 金额:$ 66.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-10 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsArchivesBiochemical PathwayBiologicalBiological AssayBiological MarkersBirthBloodClinical ResearchDataDatabasesDevelopmentEthicsFetal GrowthFetal Growth RetardationFirst Pregnancy TrimesterFutureGene ExpressionGene Expression RegulationGene TargetingGenerationsGenesGenetic TranscriptionGoalsGrowthGrowth and Development functionHumanInstitutesKnowledgeLeadLengthMachine LearningMedicalMedical centerMethodologyModelingMolecularMolecular ProfilingMonitorPathologicPathway AnalysisPathway interactionsPediatric HospitalsPeptidesPeripheralPlacentaPlacental BiologyPlacental InsufficiencyPlacentationPre-EclampsiaPregnancyPregnancy OutcomePremature BirthPreventionProteinsProteomicsPublic HealthRoleSamplingSignal PathwaySourceSystemSystems BiologyTestingTissuesUnited States National Institutes of HealthUrineWorkadverse pregnancy outcomebiomarker paneldatabase designeffective interventionfetalgenome-wideinfant deathinsightlongitudinal analysismaternal serummetabolomicsprematurepreventprospectivetranscription factortranscriptomics
项目摘要
PROJECT SUMMARY
Our goal in this proposal is to identify biological networks involved in synchronizing placental growth and
maturity. To accomplish this goal, we have established a collaborative effort between the Center for Prevention
of Preterm Birth at Cincinnati Children’s Hospital Medical Center (CCHMC) and the Institute for Systems
Biology (ISB) in Seattle to conduct a systems level analysis of “omics” data. Perturbed growth and maturity can
lead to placental insufficiency, which underlies a significant proportion of adverse pregnancy outcomes, such
as preterm birth. A paucity of knowledge regarding normal placental development and maturity greatly hinders
any study of placental insufficiency. Placental growth and development occurs throughout gestation and
reaches maturity at term. Therefore, it is critical to identify the networks involved and to assess them over the
length of gestation. Our central hypothesis is that key biological networks vital to placental growth and
maturity can be identified through the intersection of transcriptomic, proteomic, and metabolomics
data from term and preterm placentae. Furthermore, utilizing longitudinal proteomics and metabolomics
data, we can determine how those pathways change over gestation and differ between normal and preterm
placentae. We will test this hypothesis through the following aims:
Aim 1: Identification of key gene and metabolite signatures involved in placental development by
analyzing longitudinal “omics” data. Using publically available transcriptomic data, we will generate a
molecular profile of expressed genes in placental development throughout gestation. We will also determine
the placental secretome and identify biomarker signatures that appear in maternal urine that reflect placental
maturation.
Aim 2: Identification of molecular pathways associated with placental maturity. We will utilize network
topology algorithms to identify changes in molecular pathways in preterm and term placentae. These data will
be combined with publically available data to identify molecular pathways and genes within those pathways
that differ between term and preterm placentae to provide insight into placental maturity.
Aim 3: Generation of a placenta-specific transcriptional network for identifying regulatory mechanisms
involved in placental maturity. We will construct genome-scale, tissue specific models of placental
transcriptional regulatory networks using our newly-developed Transcriptional Regulatory Network Analysis
(TRENA) approach, which leverages a wealth of information from the NIH’s ENCODE project. We will
characterize which transcriptional regulators are most likely responsible for perturbed gene expression, their
signaling pathways and downstream targets. Previously unknown or understudied networks or genes identified
targeted for further analyses in placental growth and maturity and future prospective clinical studies.
项目摘要
我们在这一亲掌的目标是确定涉及同步胎盘增长和的生物网络
成熟。
辛辛那提儿童医院医疗中心(CCHMC)和系统研究所的早产
搜索中的生物学(ISB)对“ OMICS”数据进行系统级别分析。
导致胎盘功能不全,这是不良妊娠结局的重大建议。
作为早产。
任何关于胎盘不足和胎盘生长和发育的研究均发生在整个妊娠和
到期
妊娠的长度。我们的中心假设是
可以识别成熟度的转录组,蛋白质组学和代谢组学的相互作用
术语和早产的数据。
数据,我们可以确定这些途径在妊娠上如何变化以及正常和早产之间的差异
胎盘。我们将检验以下AMS的假设:
目标1:通过
使用公开可用的transtomic数据分析纵向“ OMICS”数据
胎盘发育中表达基因的分子谱。
胎盘分泌室并识别出产妇尿液中反映胎盘的生物标志物签名Spppear
成熟。
AIM 2:识别与胎盘生产力相关的分子途径。
拓扑算法确定早产和术语胎盘中分子途径的变化
与公开可用的数据结合使用,以识别这些途径中的分子途径和基因
这在术语和早产胎盘之间有所不同,以洞悉胎盘成熟度。
目标3:生成胎盘特异性转录网络,用于识别调节器机制
参与胎盘生产力。
使用我们开发的转录调节网络分析的转录调节网络
(TRENA)方法,从NIH的编码项目中利用大量信息
表征哪些转录调节器最有可能导致扰动的原因
信号通路和下游目标。
针对进一步分析胎盘生长和生产力以及未来的前瞻性临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louis J Muglia其他文献
Louis J Muglia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Louis J Muglia', 18)}}的其他基金
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
- 批准号:
7578658 - 财政年份:2009
- 资助金额:
$ 66.81万 - 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
- 批准号:
8402381 - 财政年份:2009
- 资助金额:
$ 66.81万 - 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
- 批准号:
8011545 - 财政年份:2009
- 资助金额:
$ 66.81万 - 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
- 批准号:
8204986 - 财政年份:2009
- 资助金额:
$ 66.81万 - 项目类别:
AMYGDALA GLUCOCORTICOID RECEPTOR FUNCTION IN STRESS
压力下杏仁核糖皮质激素受体的功能
- 批准号:
7769911 - 财政年份:2009
- 资助金额:
$ 66.81万 - 项目类别:
THE GENETIC EPIDEMIOLOGY OF INHERITED ABNORMALITIES OF PARTURITION
遗传性分娩异常的遗传流行病学
- 批准号:
7377216 - 财政年份:2006
- 资助金额:
$ 66.81万 - 项目类别:
THE GENETIC EPIDEMIOLOGY OF INHERITED ABNORMALITIES OF PARTURITION
遗传性分娩异常的遗传流行病学
- 批准号:
7198733 - 财政年份:2005
- 资助金额:
$ 66.81万 - 项目类别:
Glucocorticoid Receptor function in Thymocytes
胸腺细胞中的糖皮质激素受体功能
- 批准号:
7031653 - 财政年份:2003
- 资助金额:
$ 66.81万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
- 批准号:
10437438 - 财政年份:2022
- 资助金额:
$ 66.81万 - 项目类别:
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
- 批准号:
10578721 - 财政年份:2022
- 资助金额:
$ 66.81万 - 项目类别:
CAJAL: A computational framework for the combined morphometric, transcriptomic, and physiological analysis of cells
CAJAL:细胞形态学、转录组学和生理学综合分析的计算框架
- 批准号:
10509196 - 财政年份:2022
- 资助金额:
$ 66.81万 - 项目类别:
Development of a Precision Medicine-based Diagnostic Tool for Membranous Nephropathy
膜性肾病精准医学诊断工具的开发
- 批准号:
10324016 - 财政年份:2021
- 资助金额:
$ 66.81万 - 项目类别:
Predicting Outcomes in Children with Ulcerative Colitis
预测溃疡性结肠炎儿童的结果
- 批准号:
10286334 - 财政年份:2021
- 资助金额:
$ 66.81万 - 项目类别: