Graphene-based Nanosensor Device for Rapid, Onsite Detection of Dissolved Lead in Tap Water
基于石墨烯的纳米传感器装置,用于快速现场检测自来水中溶解的铅
基本信息
- 批准号:9409977
- 负责人:
- 金额:$ 19.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingBacteriaBehaviorBiologicalBrainCalciumCationsChemicalsChildCommunicationComplexCouplingDataDetectionDevelopmentDevicesDisinfectionEnsureEnvironmentEventFutureGlutathioneGoldHealthHealth BenefitHeartHeavy MetalsHouseholdHuman bodyHybridsImmobilizationIn SituIntakeIonsKidneyLabelLaboratoriesLeadLead PoisoningLead levelsLegal patentMagnesiumMeasurementMercuryMethodsMichiganModelingMonitorNanostructuresOrganOxidesPerformancePhasePlantsPlumbingPoisoningPreparationPrivatizationProcessProteinsPublic HealthReportingResearchRiskSafetySamplingSchoolsSelf-AdministeredSensitivity and SpecificitySignal TransductionSmall Business Technology Transfer ResearchSourceStructureSurfaceSystemTechnologyTest ResultTestingTimeTrainingUnited States Environmental Protection AgencyWaterWater SupplyWireless TechnologyWisconsinaqueousbasebonecommercializationcontaminated drinking watercostcost effectivedigitaldrinking watergraphenehandheld equipmentimprovedinnovationlead concentrationlead contaminationlead exposurelead ionmeternanoparticlenanosensorsnoveloperationportabilityprototypepublic drinkingresponsesensorsoft tissuestemwater qualitywater testingwater treatment
项目摘要
PROJECT SUMMARY
There is an increasing public concern about monitoring water quality in the entire drinking water supply system, especially
at the point of use, spurred by recent water catastrophes, such as the one in Flint, Michigan that has caused severe health
issues for thousands of children due to the unsafe level of lead in contaminated drinking water. Current quantitative detection
methods for aqueous lead are often laboratory-based and are too expensive and time-consuming, unsuitable for end water
users to perform fast and onsite detection. This project aims to investigate the feasibility of a handheld device for real-time,
onsite detection of toxic lead in tap water. The device integrates a novel micro-sized sensor chip built upon a graphene-gold
nanoparticle sensing platform with a portable digital signal meter for direct readout of testing results. This project intends
to address the need for quantitative, real-time, in situ detection of total dissolved lead ions in tap water by developing a
sensitive, specific, fast, portable, and cost-effective prototype handheld device that can be self-administered without any
special training.
Major innovations of the project lie in the use of an aqueous sensing platform with superior sensing performance (i.e., high
sensitivity, excellent selectivity, and fast response under laboratory environment and in field settings) and the combination
of the sensor with a digital meter for direct display of testing results in tens of seconds. The sensing platform consists of a
multifunctional hybrid nanostructure (i.e., graphene as the sensing signal transduction channel and the support for gold
nanoparticles functionalized with chemical probes), which is capable of differentiating lead ions from other aqueous ions
(e.g., calcium and magnesium) through specific coupling events between the lead ion and the specially chosen chemical
probe (i.e., glutathione) on the gold nanoparticle surface. Specific research aims of the project are to: (1) Determine the
influence of pH value on the sensor performance so that sensing results can be interpreted properly; (2) Develop a model to
estimate the total dissolved lead based on the measurement of free lead ion concentration in water and implement this model
in the handheld device for reporting total dissolved lead concentration in water; (3) Study how potential interfering species
in tap water (e.g., disinfection by-products) affect the sensing behavior of the handheld device and to identify possible
strategies to minimize the undesirable interference. The technical and commercial feasibility of the handheld device and
associated technology will be determined for future development and commercialization.
The proposed activities will improve the sensing reliability and device integrity, maximizing the commercialization
opportunities of the device. The availability of the device contributes to safeguarding the public drinking water safety, as
this innovative sensing technology permits fast, onsite test of lead ions in water supply systems, particularly at the point of
use. The framework of the device is also expandable with the potential to serve as the basis to build a sensing network for
real-time water quality monitoring of the entire drinking water system, enhancing the public drinking water safety.
项目概要
公众对整个饮用水供应系统的水质监测越来越关注,特别是
受最近发生的水灾的影响,例如密歇根州弗林特发生的水灾,造成了严重的健康问题
由于受污染的饮用水中铅含量不安全,给成千上万的儿童带来了问题。电流定量检测
水性铅的方法通常是基于实验室的,成本太高且耗时,不适合最终水
用户进行快速现场检测。该项目旨在研究手持设备实时、
现场检测自来水中的有毒铅。该设备集成了一种基于石墨烯-金的新型微型传感器芯片
纳米颗粒传感平台配有便携式数字信号计,可直接读出测试结果。该项目旨在
通过开发一种方法来满足对自来水中总溶解铅离子进行定量、实时、原位检测的需求
灵敏、特异、快速、便携且经济高效的原型手持设备,无需任何操作即可自行管理
特殊训练。
该项目的主要创新在于使用了具有优越传感性能(即高
灵敏度、出色的选择性以及实验室环境和现场环境下的快速响应)及其组合
传感器配有数字仪表,可在数十秒内直接显示测试结果。传感平台由
多功能混合纳米结构(即石墨烯作为传感信号转导通道并支持金)
用化学探针功能化的纳米颗粒),能够区分铅离子和其他水离子
(例如钙和镁)通过铅离子和专门选择的化学物质之间的特定耦合事件
金纳米颗粒表面上的探针(即谷胱甘肽)。该项目的具体研究目标是:(1)确定
pH值对传感器性能的影响,以便正确解释传感结果; (2) 建立模型
根据水中游离铅离子浓度的测量估算总溶解铅并实施该模型
在手持设备中报告水中总溶解铅浓度; (3) 研究潜在的干扰物种如何
自来水中的污染物(例如消毒副产物)会影响手持设备的传感行为并识别可能的
尽量减少不良干扰的策略。手持设备的技术和商业可行性
将确定相关技术的未来开发和商业化。
拟议的活动将提高传感可靠性和设备完整性,最大限度地实现商业化
设备的机会。该装置的推出,有利于保障公众饮水安全,
这种创新的传感技术可以对供水系统中的铅离子进行快速现场测试,特别是在
使用。该设备的框架还可以扩展,有可能作为构建传感网络的基础
整个饮用水系统的水质实时监测,提升公众饮水安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganhua Lu其他文献
Ganhua Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 19.46万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.46万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.46万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 19.46万 - 项目类别: