A microaggregation framework for reproducible research with observational data: addressing biases while protecting personal identities
利用观察数据进行可重复研究的微聚合框架:在保护个人身份的同时解决偏见
基本信息
- 批准号:9306948
- 负责人:
- 金额:$ 16.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:ALPPAddressAdverse drug eventArchitectureClinical TrialsCommunitiesConflict (Psychology)DataData ScienceData SourcesDatabasesDepositionDisclosureDiseaseEffectivenessElectronic Health RecordEventEvidence Based MedicineExperimental DesignsFamilyFosteringFoundationsFuture GenerationsGene ExpressionGene ProteinsGoalsHealthHealthcareIncidenceIndividualInformaticsKnowledgeLearningLiteratureManuscriptsMapsMeasuresMedicalMedicineMethodologyMethodsMissionModelingObservational StudyOnset of illnessOutcomePatient-Focused OutcomesPatientsPharmacotherapyPrivacyRandomizedRandomized Controlled TrialsRecordsReproducibilityResearchRestRiskSafetyScienceSecureSignal TransductionSurvival AnalysisSystemTaxonomyTechnologyTimeUpdatealternative treatmentbasecase controlclinical practicecomparative effectivenessdata accessdata formatdata sharingdatabase querydesigneffectiveness researchhealth datahealth recordimprovedindividual patientinnovationinterestknowledge basemembernovelpatient privacypoint of careprecision medicinepreventprogramsrepositorysuccesstreatment choice
项目摘要
PROJECT SUMMARY/ABSTRACT
The primary objective of the current proposal is to foster efforts towards transparent and
reproducible knowledge repositories for evidence-based medicine. The wealth of healthcare
data already available in electronic health records could be better utilized to help guide
treatment choices and compliment findings from randomized controlled trials. This proposal
addresses two major obstacles. The first is the challenge of deriving high-quality evidence from
observational data in the presence of biases and confounders, particularly with temporal data.
The second is that patient privacy and other concerns prevent disclosure of source data, which
hinders reproducible research -- currently there is a vast body of medical literature whose
findings guide clinical practice, yet cannot be independently scrutinized. We will address these
challenges through an innovative methodology, local control, which both corrects biases and
enables disclosure of question-specific microaggregated data to reproduce research findings
without disclosure of individual information. The key idea behind local control is to form many
homogeneous patient clusters within which one can compare alternate treatments, statistically
correcting for measured biases and confounders, analogous to a randomized block design. Our
methodology provides a unified framework for enabling open, high quality, comparative
effectiveness research by combining novel feature selection approaches, based on fractional
factorial experimental design, with advances in survival analysis, including competing risks. We
will create a public R package containing a family of methods for nonparametric bias correction
and statistical disclosure control in cross-sectional, case-control, and survival analysis settings.
Success of this research will also enable a novel model, we term “parcelled data sharing” to
facilitate open selective release of proprietary data sources for specific questions --
simultaneously protecting patient privacy, proprietary interests, and the public good. Our
research will contribute to the goal of evidence-based medicine being supported by national and
global knowledge bases on thousands of comparative effectiveness questions from 100’s of
millions of patients’ health records. This application supports the NLM mission by assisting in
the advancement of medical and related sciences through the dissemination and exchange of
important information to the progress of medicine and health. The specific aims are to (1)
Develop and evaluate a survival-based local control methodology for bias-corrected treatment
comparisons in time-to-event observational data; and (2) Develop and evaluate local control-
based microaggregation for reproducible research.
项目摘要/摘要
当前建议的主要目的是促进透明和
可再现的知识存储库,用于循证医学。医疗保健的财富
电子健康记录中已经可以使用的数据可以更好地帮助指导
从随机对照试验中的治疗选择和补充发现。这个建议
解决两个主要障碍。首先是从中获得高质量证据的挑战
在存在偏见和混杂因素的情况下,尤其是临时数据的观察数据。
第二个是患者隐私和其他问题阻止披露来源数据,这是
阻碍可重复的研究 - 目前有大量的医学文献
发现指导临床实践,但不能独立审查。我们将解决这些
通过创新方法,局部控制挑战,既纠正偏见,又
可以披露特定问题的微聚集数据以复制研究结果
没有披露个人信息。本地控制背后的关键思想是形成许多
均质的患者簇可以在统计上比较替代治疗
校正测量的偏见和混杂因素,类似于随机块设计。我们的
方法论提供了一个统一的框架,以实现开放,高质量,比较
通过组合新型特征选择方法,基于分数,有效研究
阶乘实验设计,随着生存分析的进步,包括竞争风险。我们
将创建一个包含用于非参数偏见校正的方法家族的公共r软件包
以及横断面,病例对照和生存分析设置中的统计披露控制。
这项研究的成功也将使一个新颖的模型,我们将“包裹数据共享”称为
促进针对特定问题的专有数据源的开放选择性发布 -
同样,保护患者隐私,专有利益和公共利益。我们的
研究将促进由国家和国家支持的基于证据的医学的目标
全球知识基础是100的数千个比较有效性问题
数百万患者的健康记录。该应用程序通过协助来支持NLM任务
通过传播和交换医学和相关科学的发展
医学和健康进步的重要信息。具体目的是(1)
开发和评估一种基于生存的局部控制方法,用于偏见校正治疗
比较事件时间观察数据; (2)开发和评估当地控制 -
基于可重复研究的微聚集。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LocalControl: An R Package for Comparative Safety and Effectiveness Research.
- DOI:10.18637/jss.v096.i04
- 发表时间:2020
- 期刊:
- 影响因子:5.8
- 作者:Lauve NR;Nelson SJ;Young SS;Obenchain RL;Lambert CG
- 通讯作者:Lambert CG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christophe G. Lambert其他文献
Christophe G. Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christophe G. Lambert', 18)}}的其他基金
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 的自杀检测和治疗结果
- 批准号:
10587966 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD and TBI
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 和 TBI 的自杀检测和治疗结果
- 批准号:
10088135 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10217890 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10683510 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10907966 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10468527 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6582179 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6341382 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
7013551 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6693828 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:
10637093 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别: