A microaggregation framework for reproducible research with observational data: addressing biases while protecting personal identities
利用观察数据进行可重复研究的微聚合框架:在保护个人身份的同时解决偏见
基本信息
- 批准号:9306948
- 负责人:
- 金额:$ 16.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:ALPPAddressAdverse drug eventArchitectureClinical TrialsCommunitiesConflict (Psychology)DataData ScienceData SourcesDatabasesDepositionDisclosureDiseaseEffectivenessElectronic Health RecordEventEvidence Based MedicineExperimental DesignsFamilyFosteringFoundationsFuture GenerationsGene ExpressionGene ProteinsGoalsHealthHealthcareIncidenceIndividualInformaticsKnowledgeLearningLiteratureManuscriptsMapsMeasuresMedicalMedicineMethodologyMethodsMissionModelingObservational StudyOnset of illnessOutcomePatient-Focused OutcomesPatientsPharmacotherapyPrivacyRandomizedRandomized Controlled TrialsRecordsReproducibilityResearchRestRiskSafetyScienceSecureSignal TransductionSurvival AnalysisSystemTaxonomyTechnologyTimeUpdatealternative treatmentbasecase controlclinical practicecomparative effectivenessdata accessdata formatdata sharingdatabase querydesigneffectiveness researchhealth datahealth recordimprovedindividual patientinnovationinterestknowledge basemembernovelpatient privacypoint of careprecision medicinepreventprogramsrepositorysuccesstreatment choice
项目摘要
PROJECT SUMMARY/ABSTRACT
The primary objective of the current proposal is to foster efforts towards transparent and
reproducible knowledge repositories for evidence-based medicine. The wealth of healthcare
data already available in electronic health records could be better utilized to help guide
treatment choices and compliment findings from randomized controlled trials. This proposal
addresses two major obstacles. The first is the challenge of deriving high-quality evidence from
observational data in the presence of biases and confounders, particularly with temporal data.
The second is that patient privacy and other concerns prevent disclosure of source data, which
hinders reproducible research -- currently there is a vast body of medical literature whose
findings guide clinical practice, yet cannot be independently scrutinized. We will address these
challenges through an innovative methodology, local control, which both corrects biases and
enables disclosure of question-specific microaggregated data to reproduce research findings
without disclosure of individual information. The key idea behind local control is to form many
homogeneous patient clusters within which one can compare alternate treatments, statistically
correcting for measured biases and confounders, analogous to a randomized block design. Our
methodology provides a unified framework for enabling open, high quality, comparative
effectiveness research by combining novel feature selection approaches, based on fractional
factorial experimental design, with advances in survival analysis, including competing risks. We
will create a public R package containing a family of methods for nonparametric bias correction
and statistical disclosure control in cross-sectional, case-control, and survival analysis settings.
Success of this research will also enable a novel model, we term “parcelled data sharing” to
facilitate open selective release of proprietary data sources for specific questions --
simultaneously protecting patient privacy, proprietary interests, and the public good. Our
research will contribute to the goal of evidence-based medicine being supported by national and
global knowledge bases on thousands of comparative effectiveness questions from 100’s of
millions of patients’ health records. This application supports the NLM mission by assisting in
the advancement of medical and related sciences through the dissemination and exchange of
important information to the progress of medicine and health. The specific aims are to (1)
Develop and evaluate a survival-based local control methodology for bias-corrected treatment
comparisons in time-to-event observational data; and (2) Develop and evaluate local control-
based microaggregation for reproducible research.
项目概要/摘要
当前提案的主要目标是促进努力实现透明和
循证医学的可重复知识库。医疗保健的财富。
可以更好地利用电子健康记录中现有的数据来帮助指导
治疗选择和随机对照试验的结果值得称赞。
解决了两个主要障碍,第一个是从中获取高质量证据的挑战。
存在偏差和混杂因素的观察数据,特别是时间数据。
第二个是患者隐私和其他问题阻止了源数据的泄露,这
阻碍了可重复的研究——目前有大量的医学文献
研究结果指导临床实践,但无法进行独立审查,我们将解决这些问题。
通过创新方法、本地控制来应对挑战,既纠正偏见,又
能够披露特定问题的微聚合数据以重现研究结果
不披露个人信息的情况下,地方控制背后的关键思想是形成许多。
同质的患者群体,可以在其中比较替代治疗方法,
纠正测量的偏差和混杂因素,类似于我们的随机区组设计。
方法论提供了一个统一的框架,以实现开放、高质量、可比较的
基于分数的结合新颖特征选择方法的有效性研究
因子实验设计,生存分析的进步,包括竞争风险。
将创建一个公共 R 包,其中包含一系列用于非参数偏差校正的方法
横截面、病例对照和生存分析环境中的统计披露控制。
这项研究的成功还将实现一种新颖的模型,我们称之为“分段数据共享”
促进针对特定问题公开选择性地发布数据源——
同时保护患者隐私、专有利益和公共利益。
研究将有助于实现国家和地区支持的循证医学目标
全球知识库基于来自数百个国家的数千个比较有效性问题
该应用程序通过协助支持 NLM 的使命。
通过传播和交流医学和相关科学的进步
医学和健康进步的重要信息,具体目标是 (1)
开发和评估基于生存的局部控制方法以进行偏差校正治疗
事件发生时间观测数据的比较;以及 (2) 制定和评估本地控制
基于微聚集的可重复研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LocalControl: An R Package for Comparative Safety and Effectiveness Research.
- DOI:10.18637/jss.v096.i04
- 发表时间:2020
- 期刊:
- 影响因子:5.8
- 作者:Lauve NR;Nelson SJ;Young SS;Obenchain RL;Lambert CG
- 通讯作者:Lambert CG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christophe G. Lambert其他文献
Christophe G. Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christophe G. Lambert', 18)}}的其他基金
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 的自杀检测和治疗结果
- 批准号:
10587966 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD and TBI
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 和 TBI 的自杀检测和治疗结果
- 批准号:
10088135 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10217890 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10683510 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10907966 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10468527 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6582179 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6341382 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
7013551 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6693828 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
CAR T cells targeting mesothelin and secreting bispecific antibodies targeting fibroblasts in pancreatic cancer
CAR T 细胞靶向间皮素并分泌靶向胰腺癌成纤维细胞的双特异性抗体
- 批准号:
10731635 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Screening and Brief Intervention for Prescription Stimulant Misuse and Diversion: Refining and Piloting a Curriculum for College Health Providers
针对处方兴奋剂滥用和转移的筛查和简短干预:为大学医疗服务提供者完善和试点课程
- 批准号:
10731122 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别: