Regulation of Rotavirus Replication, Virulence, and Host Range Restriction by the Innate Immune System
先天免疫系统对轮状病毒复制、毒力和宿主范围限制的调节
基本信息
- 批准号:9308428
- 负责人:
- 金额:$ 22.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAnimalsAntiviral AgentsAreaBiological AssayBiological ModelsBiologyBystander EffectCellsChemicalsChildCommunicable DiseasesComplexCryoelectron MicroscopyCullin ProteinsDataDown-RegulationEnteralEnzymesEpithelial CellsGastroenteritisHematopoieticHumanIRF3 geneImmune EvasionImpairmentIn VitroInnate Immune ResponseInnate Immune SystemInterferon ReceptorInterferonsIntestinesMediatingMitochondriaMitochondrial ProteinsMolecularMucosal ImmunityMusMutagenesisNatural ImmunityPathogenesisPatternPhasePhosphorylationPreventionProductionProtein InhibitionProteinsRNA CapsReceptor GeneReceptor InhibitionRegulationResearchRoleRotavirusRotavirus InfectionsRotavirus NSP1 proteinSH2D3A geneSTAT1 geneSignal TransductionSignaling ProteinSmall Interfering RNASystemTBK1 geneUbiquitinationVaccinesViralViral ProteinsVirulenceVirulentVirusbeta-Transducin Repeat-Containing Proteinscullin-3enteric pathogengastrointestinalin vivoin vivo Modelkillingsknock-downnon-Nativepathogenprotein degradationreceptorresponsesensorsuccessubiquitin-protein ligase
项目摘要
PROJECT SUMMARY/ABSTRACT
Rotaviruses (RVs) are highly infectious viruses of great importance because they are the most common
cause of severe gastroenteritis in young children. We will address three fundamental topics in rotavirology
(RV) that will expand our understanding of the molecular mechanisms regulating RV innate immune evasion.
1. Determine the structural basis and in vivo activity of NSP1-mediated β-TrCP degradation.
Despite the RV NSP1 protein's well-documented ability to induce IRF3 and/or β-TrCP degradation, the
mechanisms regulating this degradation are unknown. Human RV NSP1s specifically target β-TrCP. We
have recently identified an unexpected role of the host Cullin-E3 ligase complex in NSP1's degradative
functions. In this aim we will dissect how NSP1 is able to hijack the host Cullin-E3 ligase complex, induce β-
TrCP degradation, block NF-κB activation and thereby promote homologous RV replication.
2. Identify the molecular mechanisms underlying MAVS degradation by VP3 in a strain- and host-
specific fashion both in vitro and in vivo.
We previously showed that ssRNA byproducts from RV infection are potent activators of cytosolic sensors
RIG-I and MDA5, both of which converge on mitochondrial antiviral signaling protein (MAVS) to relay innate
signaling and induce IFN expression. Unexpected preliminary findings suggest that MAVS is targeted for
proteasomal degradation by the RV VP3 protein in a host range restricted (HRR) manner. Here we will
explore the complex interplay between VP3 and MAVS from different RV species at a mechanistic level and
evaluate the importance of VP3-mediated MAVS degradation in promoting RV replication in vitro and in vivo.
3. Identify the mechanism of RV NSP1-mediated inhibition of STAT1 activation and the intestinal cell
origin of the IFN responses to RV infection.
Despite the ability to efficiently suppress the induction of type I IFN in intestinal epithelial cells (IECs),
homologous RV infection still induces substantial levels of type I and III IFNs in the gut. This IFN production
suggests that RVs must be able to subvert IFN-mediated antiviral amplification as well as blocking IFN
induction. RV NSP1 efficiently inhibits IFN-mediated STAT1 phosphorylation. New findings indicate RV
blocks STAT1 activation by depleting multiple IFN receptors, likely by NSP1-directed degradation. RVs can
also block IFN-directed STAT1 activation in uninfected cells in vitro. Whether this effect also occurs in vivo is
unknown. We propose to identify the hematopoietic cell and IEC origins of type I and III IFNs elicited by RV
infection. We will also examine the mechanistic determinants of RV-mediated IFN receptor degradation and
inhibition of STAT1 activation and determine if differences in these functions contribute to RV HRR.
项目概要/摘要
轮状病毒 (RV) 是一种具有高度传染性的病毒,非常重要,因为它们是最常见的病毒
我们将讨论轮状病毒学的三个基本主题。
(RV),这将扩大我们对调节 RV 先天免疫逃避的分子机制的理解。
1. 确定NSP1介导的β-TrCP降解的结构基础和体内活性。
尽管 RV NSP1 蛋白具有诱导 IRF3 和/或 β-TrCP 降解的能力,但
调节这种降解的机制尚不清楚。
最近发现宿主 Cullin-E3 连接酶复合物在 NSP1 降解中发挥着意想不到的作用
为此,我们将剖析 NSP1 如何劫持宿主 Cullin-E3 连接酶复合物,诱导 β-。
TrCP 降解,阻断 NF-κB 激活,从而促进同源 RV 复制。
2. 确定菌株和宿主中 VP3 降解 MAVS 的分子机制
体外和体内的特定方式。
我们之前表明 RV 感染的 ssRNA 副产物是胞质传感器的有效激活剂
RIG-I 和 MDA5,两者均聚集在线粒体抗病毒信号蛋白 (MAVS) 上以传递先天信号
意外的初步结果表明 MAVS 是针对的。
RV VP3 蛋白以宿主范围限制 (HRR) 方式进行蛋白酶体降解。
在机制层面探索不同 RV 物种的 VP3 和 MAVS 之间复杂的相互作用
评估 VP3 介导的 MAVS 降解在促进 RV 体外和体内复制中的重要性。
3. 确定RV NSP1介导的STAT1激活和肠细胞抑制的机制
IFN 对 RV 感染反应的起源。
尽管能够有效抑制肠上皮细胞 (IEC) 中 I 型干扰素的诱导,
同源 RV 感染仍会在肠道中诱导大量 I 型和 III 型干扰素的产生。
表明 RV 必须能够破坏 IFN 介导的抗病毒放大以及阻断 IFN
新发现表明 RV NSP1 可有效抑制 IFN 介导的 STAT1 磷酸化。
通过消耗多个 IFN 受体来阻断 STAT1 激活,可能是通过 NSP1 引导的 RV 降解。
体外也可阻断未感染细胞中 IFN 介导的 STAT1 激活,但这种效应是否也发生在体内。
我们建议鉴定 RV 引发的 I 型和 III 型干扰素的造血细胞和 IEC 起源。
我们还将研究 RV 介导的 IFN 受体降解的机制决定因素和
抑制 STAT1 激活并确定这些功能的差异是否会导致 RV HRR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Bernard Greenberg其他文献
Harry Bernard Greenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harry Bernard Greenberg', 18)}}的其他基金
Regulation of Rotavirus Replication, Virulence, and Host Range Restriction by the Innate Immune System
先天免疫系统对轮状病毒复制、毒力和宿主范围限制的调节
- 批准号:
10091389 - 财政年份:2017
- 资助金额:
$ 22.06万 - 项目类别:
Mucosal and Systemic Immune Responses to Influenza Virus
对流感病毒的粘膜和全身免疫反应
- 批准号:
8990809 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Project 2: Regulation of Rotavirus Host Range, Neutralization, and M cell Interactions in Enteric Biomimetics
项目2:肠道仿生学中轮状病毒宿主范围、中和和M细胞相互作用的调节
- 批准号:
10392441 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Project 2: Regulation of Rotavirus Host Range, Neutralization, and M cell Interactions in Enteric Biomimetics
项目2:肠道仿生学中轮状病毒宿主范围、中和和M细胞相互作用的调节
- 批准号:
10191938 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Mucosal and Systemic Immune Responses to Influenza Virus
对流感病毒的粘膜和全身免疫反应
- 批准号:
8825882 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Project 2: Regulation of Rotavirus Host Range, Neutralization, and M cell Interactions in Enteric Biomimetics
项目2:肠道仿生学中轮状病毒宿主范围、中和和M细胞相互作用的调节
- 批准号:
10614394 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Mucosal and Systemic Immune Responses to Influenza Virus
对流感病毒的粘膜和全身免疫反应
- 批准号:
9188802 - 财政年份:2015
- 资助金额:
$ 22.06万 - 项目类别:
Spectrum Stanford Center for Clinical and Translational Research and Education
Spectrum 斯坦福临床和转化研究与教育中心
- 批准号:
8743339 - 财政年份:2013
- 资助金额:
$ 22.06万 - 项目类别:
Spectrum Stanford Center for clinical and Translational Research and Education
Spectrum 斯坦福临床和转化研究与教育中心
- 批准号:
8743338 - 财政年份:2013
- 资助金额:
$ 22.06万 - 项目类别:
Spectrum Stanford Center for clinical and Translational Research and Education
Spectrum 斯坦福临床和转化研究与教育中心
- 批准号:
8914747 - 财政年份:2013
- 资助金额:
$ 22.06万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation and feedback in Fat/Dachsous signaling
Fat/Dachsous 信号传导的调节和反馈
- 批准号:
10716713 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10539146 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10709540 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10553665 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别: