Establishing Mechanisms of Human Proximal Tubule Regeneration in an Engineered Organ on Chip Platform
在芯片平台上的工程器官中建立人类近端小管再生机制
基本信息
- 批准号:9437497
- 负责人:
- 金额:$ 22.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-23 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAblationAcuteAcute Renal Failure with Renal Papillary NecrosisAdoptedAffectAlbuminsAmericanBiocompatible MaterialsBiomedical EngineeringBiomimeticsBlood VesselsBlood capillariesCell Culture TechniquesCell SurvivalCell physiologyCellular StructuresChronic Kidney FailureCiliaCollaborationsCuesCultured CellsD CellsDataDevelopmentDialysis procedureDoxycyclineEnd stage renal failureEndothelial CellsEngineeringEpithelial CellsEpitheliumEquipmentExtracellular MatrixFacultyFibroblastsFiltrationFoundationsFunding MechanismsFunding OpportunitiesFutureGelatinGoalsHumanHuman EngineeringHydrogelsIn VitroInjectableInjuryIonsKidneyKidney DiseasesKidney TransplantationLasersLiquid substanceMediatingMicrofabricationMicrofluidicsModelingModulusMusNatural regenerationNephronsNephrotoxicOrganOutcomes ResearchPatientsPerfusionPharmaceutical PreparationsPhenotypePhysiologicalPlasmaPlasticizersPopulationProteinsRecoveryRegenerative MedicineResearchResearch PersonnelResearch Project GrantsRoleSiteStriated MusclesStromal CellsStructureSupporting CellSystemTestingTherapeuticTissue EngineeringTissuesTubular formationWorkabsorptionbasecapillarycell typedesignexperimental studyfunctional restorationimproved functioningin vivoinjuredinsightlaboratory experiencemembermultidisciplinaryneglectnephrogenesisnephrotoxicitynovelnovel therapeutic interventionnovel therapeuticspalliativepressurepreventrepairedshear stressstem cell biologysuccesstherapeutic developmenttooltranscription factor
项目摘要
Abstract
Chronic kidney disease affects over 26 million Americans. For the one million patients with end stage renal disease, dialysis
and kidney transplant are the only therapeutic options. However, dialysis is palliative and kidney donors are in short supply.
Thus, there is a critical need for new therapeutic strategies. The basic unit of the kidney is the nephron, a highly vascularized
filtration and recovery unit. In the nephron, the plasma filtrate generated in the glomerulus passes into the proximal tubule
(PT). The PT is lined by cuboidal proximal tubule epithelial cells (PTECs), the major resorptive cell type of the nephron
characterized by the polarized distribution of channels and transporters that recover essential molecules and ions from the
plasma filtrate. In acute kidney injury, PTECs are highly susceptible to damage. Surviving PTECs can repair the injured
nephron, but endogenous repair mechanisms are not well-understood. This slows the development of new therapeutic
strategies to accelerate PT repair in both acute and chronic kidney disease. Recently, the McMahon lab identified that the
transcription factor SOX9 is up-regulated in PTECs after acute kidney injury in mice. This SOX9+ population of PTECs
repopulates the nephron and restores function. However, whether a similar mechanism underlies repair of the human PT is
unclear. One of the only practical approaches to identify mechanisms of human PT regeneration is to study human PTECs
cultured in vitro. However, conventional culture substrates are highly artificial and lack physical cues present in the native
PT that impact PTEC phenotype and survival, such as fluid shear stress. As a result, PTECs in conventional 2-D culture
lose polarity and functionality. Recently, “Organ on Chip” approaches have been developed to expose PTECs in vitro to
physical cues similar to those in vivo, such as fluid shear stress. PTECs cultured within these platforms form differentiated
structures and have improved functionality. However, existing platforms require specialized equipment that is not accessible
to most research groups, neglect to include supporting cell populations (such as endothelial cells), and have not been used
as tools for identifying mechanisms of PT regeneration. Thus, in Aim 1, we will use off-the-shelf equipment to engineer a
scalable platform for engineering and maintaining a human PT, leveraging the McCain lab’s experience in engineering
“Organ on Chip” models of striated muscle. Our key design parameters are to apply fluid shear stress to primary human
PTECs cultured as a tubule within a protein-derived extracellular matrix (ECM) hydrogel with relatively low elastic
modulus. After validating that our engineered PT recapitulates key structural and functional phenotypes, we will add
supporting cell populations (endothelial cells, fibroblasts) into the ECM hydrogel and establish any further improvements
in PTEC viability, structure, and/or function. In Aim 2, we will induce global and local injury to our engineered PT and
examine the expression of SOX9 throughout the PT during repair. We will then determine whether manipulating SOX9
activity can augment PT repair. This project is especially well-suited for the EBRG funding mechanism because we have
established a multidisciplinary team (Prof. Megan McCain: junior investigator in biomedical engineering; Prof. McCain
Andy McMahon: established investigator in kidney development) to develop a new engineered PT tissue platform to enable
our hypothesis-driven research into SOX9-mediated mechanisms of human PT regeneration.
抽象的
慢性肾病影响着超过 2600 万美国人,其中 100 万患有终末期肾病的患者需要透析。
肾移植是唯一的治疗选择,但透析只是姑息治疗,而且肾脏捐赠者供不应求。
因此,迫切需要新的治疗策略。肾脏的基本单位是肾单位,它是一个高度血管化的单位。
在肾单位中,肾小球中产生的血浆滤液进入近端小管。
(PT) 内衬有立方形近端小管上皮细胞 (PTEC),这是肾单位的主要吸收细胞类型。
其特征是通道和转运蛋白的极化分布,可从细胞中回收必需的分子和离子
在急性肾损伤中,PTEC 非常容易受到损伤,幸存的 PTEC 可以修复受损部位。
肾单位,但内源性修复机制尚不清楚,这减缓了新疗法的开发。
最近,麦克马洪实验室发现,加速急性和慢性肾脏疾病 PT 修复的策略。
小鼠急性肾损伤后,PTEC 中的转录因子 SOX9 上调。PTEC 的 SOX9+ 群体。
然而,人类 PT 修复是否有类似的机制存在?
确定人类 PT 再生机制的唯一实用方法之一是研究人类 PTEC。
然而,传统的培养基质高度人工化,缺乏天然的物理线索。
影响 PTEC 表型和存活的 PT,例如流体剪切应力因此,传统二维培养中的 PTEC。
最近,“芯片上的器官”方法已被开发出来,可以将 PTEC 暴露在体外。
类似于体内的物理信号,例如在这些平台中培养的 PTEC 形成差异化。
然而,现有平台需要无法访问的专用设备。
对于大多数研究小组来说,忽略了支持细胞群(例如内皮细胞),并且尚未使用
作为识别 PT 再生机制的工具,因此,在目标 1 中,我们将使用现成的设备来设计一个
利用麦凯恩实验室的工程经验,用于设计和维护人类 PT 的可扩展平台
我们的关键设计参数是对原始人类施加流体剪切应力。
PTEC 在弹性相对较低的蛋白质来源的细胞外基质 (ECM) 水凝胶中培养为管状
在验证我们的工程 PT 概括了关键的结构和功能表型后,我们将添加
支持细胞群(内皮细胞、成纤维细胞)进入 ECM 水凝胶并建立任何进一步的改进
在目标 2 中,我们将诱导我们工程化的 PT 和局部损伤。
在修复过程中检查整个 PT 中 SOX9 的表达,然后我们将确定是否操纵 SOX9。
活动可以增强 PT 修复 该项目特别适合 EBRG 融资机制,因为我们有
建立了一个多学科团队(Megan McCain教授:生物医学工程初级研究员;McCain教授
Andy McMahon:肾脏发育领域的知名研究员)开发新的工程 PT 组织平台,以实现
我们对 SOX9 介导的人类 PT 再生机制的假设驱动研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW P. MCMAHON其他文献
ANDREW P. MCMAHON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW P. MCMAHON', 18)}}的其他基金
Epigenetic mechanisms underlying the failure of hair cell regeneration in mammals
哺乳动物毛细胞再生失败的表观遗传机制
- 批准号:
10440356 - 财政年份:2018
- 资助金额:
$ 22.84万 - 项目类别:
Epigenetic mechanisms underlying the failure of hair cell regeneration in mammals
哺乳动物毛细胞再生失败的表观遗传机制
- 批准号:
10200749 - 财政年份:2018
- 资助金额:
$ 22.84万 - 项目类别:
GUDMAP2 - Production of Mouse Strains for Gene Anatomy of the Lower Urinary Tract
GUDMAP2 - 用于下尿路基因解剖的小鼠品系的生产
- 批准号:
8732473 - 财政年份:2011
- 资助金额:
$ 22.84万 - 项目类别:
GUDMAP2 - Production of Mouse Strains for Gene Anatomy of the Lower Urinary Tract
GUDMAP2 - 用于下尿路基因解剖的小鼠品系的生产
- 批准号:
8507999 - 财政年份:2011
- 资助金额:
$ 22.84万 - 项目类别:
GUDMAP2 - Production of Mouse Strains for Gene Anatomy of the Lower Urinary Tract
GUDMAP2 - 用于下尿路基因解剖的小鼠品系的生产
- 批准号:
8730767 - 财政年份:2011
- 资助金额:
$ 22.84万 - 项目类别:
GUDMAP2 - Production of Mouse Strains for Gene Anatomy of the Lower Urinary Tract
GUDMAP2 - 用于下尿路基因解剖的小鼠品系的生产
- 批准号:
9142420 - 财政年份:2011
- 资助金额:
$ 22.84万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
- 批准号:82370318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Gastrointestinal GCPII in Visceral Pain Signaling
胃肠道 GCPII 在内脏疼痛信号传导中的作用
- 批准号:
10678103 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别:
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 22.84万 - 项目类别: