A Bacterial Effector Protein Modulates Host Cell-to-Cell Communication
细菌效应蛋白调节宿主细胞间的通讯
基本信息
- 批准号:9179840
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:ADP Ribose TransferasesArabidopsisBacteriaBacterial InfectionsBinding SitesCell CommunicationCell membraneCell physiologyCellsCellular StructuresDefectDepositionDevelopmentDiffusionEctopic ExpressionGap JunctionsGenesGenomeGrowth and Development functionHealthHomeostasisHumanImmune responseInfectionKnowledgeLeucine-Rich RepeatMammalsMeasuresMediatingMembraneMentorsMessenger RNAMichiganMicrobeMicrobiologyModelingMolecularMouse-ear CressMovementNanotubesNatural ImmunityNucleotidesOrganismPathogenesisPatternPattern recognition receptorPhasePlant DiseasesPlant ProteinsPlantsPlasmodesmataPlayProductionProteinsProtocols documentationPseudomonas syringaeRecording of previous eventsRegulationResearchResearch PersonnelRoleSignal TransductionSignaling MoleculeSiteSmall RNAStressSystemTestingTissuesTomatoesTrainingUniversitiesVirulenceWorkYangcallosecell motilitydefense responsedisorder controlextracellularfood securityhuman diseaselive cell imagingnovelnovel therapeuticspathogenpathogenic bacteriareceptorresponsetrafficking
项目摘要
Project Summary
Cell-to-cell communication is crucial for growth and development as well as stress adaption in
multicellular organisms. Symplastic transport of signaling molecules between plant cells is mediated by
membrane-lined channels termed plasmodesmata (PD), whereas gap junctions play similar roles in
mammals. Although pathogenic bacteria infect multicellular organisms, it is unclear whether pathogenic
bacteria exploit host cell-to-cell communication system to promote bacterial multiplication. To study host-
pathogen interactions, I explore Arabidopsis-Pseudomonas syringae pv. tomato (Pst) DC3000
pathosystem. Typically, almost all phytopathogenic bacteria are extracellular pathogen, including Pst
DC3000. Bacterial pathogens are recognized by plants via pattern recognition receptors (PRRs) on the
plasma membrane (PM) and nucleotide-binding site-leucine-rich repeat (NBS-LRR)-type receptors inside
the cell, resulting in defense activation. To overcome plant defense, Pst DC3000 injects 36 virulence
effector proteins into host cells to exert their pathogenic activities. Using live cell imaging, I discovered
that Pst DC3000 effector protein HopO1-1, an active ADP-ribosyltransferase, is targeted to the PD in
Arabidopsis. Ectopic expression of HopO1-1 in Arabidopsis leads to an increase in PD-dependent
molecular flux between plant cells. HopO1-1 is physically associated with Arabidopsis PD-located
proteins (PDLP5 and PDLP7), in which expression of PDLP5 is upregulated by P. syringae infection and
involved in plant innate immunity. To my knowledge, HopO1-1 is the first bacterial effector to be identified
as a PD-targeted protein. The finding raises the exciting possibility that bacterial pathogens deliver
effectors such as HopO1-1 to modulate host PD function, presumably by ADP-ribosylating PDLP5/7, to
facilitate bacterial spread and multiplication. The mentored phase of this proposed work will be
conducted at Michigan State University under the guidance of Dr. Sheng Yang He. During this phase, I
plan to (i) characterize the mode of action of HopO1-1 in modulating the host PD, (ii) demonstrate the
PD-dependent trafficking of bacterial effectors from the infected cells to the neighboring cells, and (iii)
establish systems in studying the dynamic host-microbe interactions at the initial infection sites. Dr. He
will provide specific training in microbiology and plant-microbe interactions as well as guidance toward
becoming an independent researcher. In the independent phase, I plan to study (i) the effect of HopO1-1
in regulating PD aperture by controlling plant callose homeostasis, (ii) the effect of HopO1-1 in the
movement of plant signaling molecules, and (iii) the functional role of HopO1-1 on creating bacterial
infection zones to establish the initial colonization in host tissues. The proposed project has potential in
carving out a new research topic in bacterial pathogenesis and establishing new experimental protocols
in the study of cell-autonomous vs. non-cell-autonomous effects in host-bacterial interactions.
项目概要
细胞间的通讯对于生长发育以及应激适应至关重要
多细胞生物。植物细胞之间信号分子的共生转运由以下因素介导
膜内通道称为胞间连丝 (PD),而间隙连接在
哺乳动物。尽管致病菌感染多细胞生物,但尚不清楚致病菌是否感染
细菌利用宿主细胞间的通讯系统来促进细菌繁殖。学习主机-
病原体相互作用,我探索拟南芥-丁香假单胞菌 pv。番茄(太平洋标准时间)DC3000
病理系统。通常,几乎所有植物病原细菌都是细胞外病原体,包括 Pst
直流3000。植物通过其上的模式识别受体(PRR)识别细菌病原体。
质膜 (PM) 和核苷酸结合位点富含亮氨酸重复序列 (NBS-LRR) 型受体
细胞,导致防御激活。为了克服植物防御,Pst DC3000 注入 36 毒力
效应蛋白进入宿主细胞以发挥其致病活性。使用活细胞成像,我发现
Pst DC3000 效应蛋白 HopO1-1(一种活性 ADP-核糖基转移酶)靶向 PD
拟南芥。拟南芥中 HopO1-1 的异位表达导致 PD 依赖性增加
植物细胞之间的分子流动。 HopO1-1 在物理上与拟南芥 PD 定位相关
蛋白(PDLP5 和 PDLP7),其中 PDLP5 的表达因丁香假单胞菌感染而上调,
参与植物先天免疫。据我所知,HopO1-1是第一个被鉴定的细菌效应子
作为 PD 靶向蛋白。这一发现提出了细菌病原体传递令人兴奋的可能性
HopO1-1 等效应器可能通过 ADP 核糖基化 PDLP5/7 来调节宿主 PD 功能,从而
促进细菌传播和繁殖。这项拟议工作的指导阶段将是
在密歇根州立大学何盛阳博士的指导下进行。在这个阶段,我
计划 (i) 描述 HopO1-1 在调节宿主 PD 中的作用模式,(ii) 证明
细菌效应物从受感染细胞到邻近细胞的 PD 依赖性运输,以及 (iii)
建立研究初始感染部位动态宿主-微生物相互作用的系统。何博士
将提供微生物学和植物-微生物相互作用方面的具体培训以及指导
成为一名独立研究员。在独立阶段,我计划研究(i)HopO1-1的效果
通过控制植物胼胝质稳态来调节 PD 孔径,(ii) HopO1-1 在
植物信号分子的运动,以及 (iii) HopO1-1 在产生细菌方面的功能作用
感染区在宿主组织中建立初始定植。拟议的项目有潜力
开辟细菌发病机制的新研究课题并建立新的实验方案
研究宿主与细菌相互作用中的细胞自主效应与非细胞自主效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyaw Aung其他文献
Kyaw Aung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyaw Aung', 18)}}的其他基金
A bacterial effector protein modulates host cell-to-cell communication
细菌效应蛋白调节宿主细胞间的通讯
- 批准号:
9815646 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
A bacterial effector protein modulates host cell-to-cell communication
细菌效应蛋白调节宿主细胞间的通讯
- 批准号:
10059250 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
相似国自然基金
拟南芥受体激酶BAK1介导细菌蛋白酶信号转导的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细菌诱导拟南芥CYP707A1介导气孔开放的分子机理和进化适应性的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
钙离子介导拟南芥病原菌感受相关基因EIC1的功能研究
- 批准号:31900226
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
拟南芥MAPK15参与调控BSK1介导的免疫反应的机制研究
- 批准号:31801020
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
拟南芥天生免疫中GPA1调控细菌鞭毛信号转导的分子机制研究
- 批准号:31770295
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
A bacterial effector protein modulates host cell-to-cell communication
细菌效应蛋白调节宿主细胞间的通讯
- 批准号:
9815646 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
A bacterial effector protein modulates host cell-to-cell communication
细菌效应蛋白调节宿主细胞间的通讯
- 批准号:
10059250 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Suppression of innate immunity by an ADP-ribosyltransferase type III effector
ADP-核糖基转移酶 III 型效应子对先天免疫的抑制
- 批准号:
7538341 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Suppression of innate immunity by an ADP-ribosyltransferase type III effector
ADP-核糖基转移酶 III 型效应子对先天免疫的抑制
- 批准号:
7382783 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
ADP-ribosylation in plant-bacteria interactions
植物-细菌相互作用中的 ADP-核糖基化
- 批准号:
7209073 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别: