Novel antiviral activity of interferon-gamma against viral replication complex
干扰素-γ针对病毒复制复合物的新型抗病毒活性
基本信息
- 批准号:9383726
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-02 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATG3 geneAnimalsAntiviral AgentsAntiviral ResponseAutophagocytosisAutophagosomeBacteriaBinding ProteinsCell membraneCellular MembraneCessation of lifeComplexCytoplasmDiseaseGenomeGoalsGuanosine Triphosphate PhosphohydrolasesHealthHumanImmuneImmune TargetingImmune responseImmune systemImmunityInterferon Type IIInterferonsInterventionKnowledgeLigaseLightLysosomesMAP1 Microtubule-Associated ProteinMediatingMedicalMembraneModelingMusNorovirusOrganellesParasitesPathway interactionsPlantsPolymeraseProteinsRNARNA VirusesRecruitment ActivityRuptureShelter facilityStructureSystemTestingTherapeuticTherapeutic InterventionToxoplasma gondiiVacuoleVirusVirus DiseasesVirus ReplicationWorkantiviral immunitybasecomparativefungusguanylateinsightnew therapeutic targetnovelpathogenprotein complexsensor
项目摘要
Project Summary/Abstract
Viruses with positive-sense RNA (+RNA) genome compose a large group of plant and animal viruses, and many
human viruses of medical concerns belong to this group of viruses. All known +RNA viruses form and replicate
within vacuole-like structures in the cytoplasm, called replication complex (RC). Viral RC is made by viruses
through reorganization of cellular organelle membranes, and it provides a favorable microenvironment for the
viruses to replicate. Nevertheless, it has been obscure whether and how the host immune system counteracts
such viral RCs. Understanding the host immune defense strategy against viral RC may allow us to develop
broadly applicable antiviral strategies against +RNA viruses. We recently found that interferon-gamma (IFNG)
inhibits the replication of murine norovirus (MNV) at the stage of RC formation. Intriguingly, this antiviral activity
of IFNG depends on a protein complex involved in cellular autophagy. Autophagy is an evolutionarily conserved
pathway that sequesters cytoplasmic materials in double-membrane-bound autophagosomes and delivers them
to the lysosome for degradation. To form a globular autophagosome, the microtubule-associated-protein-1-light-
chain-3 (LC3) conjugation system is essential. We found that only the LC3 conjugation system of autophagy, but
not the lysosomal degradation through autophagy, is required for IFNG to inhibit MNV RC formation.
Interestingly, IFNG also requires the same LC3 conjugation system, but not the lysosomal degradation, to disrupt
a cytosolic vacuole containing a protist parasite Toxoplasma gondii. Through a comparative mechanism study
of MNV and T. gondii models, we found that the LC3 conjugation system was required to recruit IFN-inducible
GTPases, immunity related GTPases (IRGs) and guanylate binding proteins (GBPs), to the RC of MNV. Both
IRGs and GBPs are known to be targeted to the membrane of vacuoles containing bacterium, protist, or fungus.
The targeted membranes are vesiculated and eventually the vacuoles rupture, leading to the death of exposed
pathogens. Similarly, the GTPases were required for IFNG to disrupt MNV RCs and consequently to inhibit the
replication of MNV in both mouse and human systems. This is a novel and paradigm-shifting antiviral mechanism
of IFNG, indicating a common effector mechanism against disparate pathogens replicating in cytosolic
membranous shelters, including +RNA virus as well as bacterium, protist, and fungus. Our long-term goal is to
harness the medical benefits based on the functional mechanism of this antiviral immune defense against viral
RCs. The overall objective of this proposal, as the next step to pursue that goal, is to determine how the RC of
MNV is detected and disrupted by the immune system. Our central hypothesis is that MNV RC is detected by
the LC3 conjugation system of the autophagy pathway and then the structure/function of RC is disrupted by the
IFN-inducible GTPases recruited via the LC3 conjugation system. The new fundamental knowledge created in
this study will have significant positive impact on human health because it will provide a novel insight into antiviral
mechanisms used by interferons and potentially new therapeutic targets of intervention for viral diseases.
项目摘要/摘要
阳性RNA(+RNA)基因组的病毒组成了一大批动植物病毒,许多
医学关注的人类病毒属于这组病毒。所有已知的 +RNA病毒形成并复制
在细胞质中的液泡样结构中,称为复制复合物(RC)。病毒RC由病毒制成
通过重组细胞器细胞器膜,并为良好的微环境提供了可观的微环境
复制病毒。然而,宿主免疫系统是否以及如何抵抗
这种病毒RCS。了解对病毒RC的宿主免疫防御策略可能使我们能够发展
针对 +RNA病毒的广泛适用抗病毒策略。我们最近发现干扰素 - 伽马(IFNG)
抑制在RC形成阶段的Norovirus(MNV)的复制。有趣的是,这种抗病毒活性
IFNG的依赖于涉及细胞自噬的蛋白质复合物。自噬是一种进化保守的
隔离双膜结合自噬体中的细胞质材料并提供的途径
到溶酶体降解。为了形成球状自噬体,微管相关的蛋白1-light-
链3(LC3)共轭系统至关重要。我们发现只有自噬的LC3结合系统,但是
IFNG抑制MNV RC的形成并不需要通过自噬的溶酶体降解。
有趣的是,IFNG还需要相同的LC3结合系统,但不需要溶酶体降解
含有原生物寄生虫弓形虫的胞质液泡。通过比较机制研究
在MNV和T. gondii模型中,我们发现需要LC3共轭系统才能募集IFN诱导
GTPases,与免疫相关的GTPase(IRGS)和鸟苷酸盐结合蛋白(Gbps)与MNV的RC。两个都
已知IRGS和GBP针对含有细菌,原生物或真菌的液泡的膜。
靶向膜是囊泡的,最终是液泡破裂的,导致暴露的死亡
病原体。同样,IFNG需要GTPases破坏MNV RC,因此抑制
小鼠和人类系统中MNV的复制。这是一种新颖而范式转移的抗病毒机制
IFNG的of,表明针对胞质复制不同病原体的常见效应机制
膜避难所,包括 +RNA病毒以及细菌,原生物和真菌。我们的长期目标是
利用这种抗病毒免疫防御的功能机制来利用医疗益处
RCS。该提案的总体目标是实现这一目标的下一步,是确定RC的RC如何
免疫系统检测并破坏了MNV。我们的中心假设是MNV RC被检测到
自噬途径的LC3共轭系统,然后RC的结构/功能被破坏
通过LC3共轭系统募集的IFN诱导GTPase。在
这项研究将对人类健康产生重大积极影响,因为它将提供对抗病毒的新见解
干扰素使用的机制以及潜在的病毒疾病干预措施的新治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seungmin Hwang其他文献
Seungmin Hwang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seungmin Hwang', 18)}}的其他基金
RP3: Targeting ATG gene-dependent immunity for novel anti-infective therapeutics
RP3:针对 ATG 基因依赖性免疫的新型抗感染疗法
- 批准号:
9893813 - 财政年份:2020
- 资助金额:
$ 39.9万 - 项目类别:
RP3: Targeting ATG gene-dependent immunity for novel anti-infective therapeutics
RP3:针对 ATG 基因依赖性免疫的新型抗感染疗法
- 批准号:
10573261 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
RP3: Targeting ATG gene-dependent immunity for novel anti-infective therapeutics
RP3:针对 ATG 基因依赖性免疫的新型抗感染疗法
- 批准号:
10364725 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting HIV-specific CAR T cells to the gut for the durable remission of HIV
将 HIV 特异性 CAR T 细胞靶向肠道以实现 HIV 的持久缓解
- 批准号:
10527172 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Broadly neutralizing SARS-CoV-2 peptidic knobs
广泛中和 SARS-CoV-2 肽旋钮
- 批准号:
10735902 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Discovery of antiviral inhibitors for the treatment of orthopoxvirus infections
发现治疗正痘病毒感染的抗病毒抑制剂
- 批准号:
10761185 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
- 批准号:
10741474 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别: