Structures of RNA Processing and Silencing Enzymes in Prokaryotes
原核生物中 RNA 加工和沉默酶的结构
基本信息
- 批准号:9247630
- 负责人:
- 金额:$ 35.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsArchaeaBacteriaBindingBiochemicalBiologicalBiological AssayBiologyBiophysicsBiotechnologyCellsCellular biologyCleaved cellClostridium tetaniClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesCommunity DevelopmentsCryoelectron MicroscopyCytosineCytosine NucleotidesDNADataDefense MechanismsDiseaseElectron MicroscopyElementsEmbryoEnvironmentEnzymatic BiochemistryEnzyme KineticsEnzyme StabilityEnzymesEpidemicEquilibriumEscherichia coliEvolutionExhibitsFundingFutureGenetic MaterialsGenetic TranscriptionGoalsGuanineGuide RNAHaemophilus influenzaeHealthHelicobacter pyloriHumanHuman MicrobiomeImage AnalysisImmunityIn VitroKineticsLaboratoriesLibrariesMaintenanceMammalian CellMediatingMedicalMethodsMicrobeMicrobiologyMolecularMycobacterium tuberculosisNeisseriaNucleic Acid BiochemistryOrganismPathway interactionsPlasmidsProkaryotic CellsPropertyProteinsRNARNA BindingRNA DegradationRNA InterferenceRNA ProcessingRaceResearchRiskSalmonella typhiScientistSingle-Stranded DNASmall RNASpecific qualifier valueSpecificityStaphylococcus aureusStructureSystemTechnologyTernTertiary Protein StructureTranscriptVibrio vulnificusVirulenceWorkX-Ray CrystallographyYersinia pestisantimicrobialarmbasecryogenicsexperiencegene therapygenetic elementgenome editingin vivointerestkidney cellmembermicrobialnovelnucleasepathogenstructural biologysuccessthermophilic organismthree dimensional structuretool
项目摘要
Description: The recent discovery that bacteria and archaea employ an RNA-guided DNA cleavage
mechanism to defend themselves from invasive genetic elements offers an unprecedented opportunity
for understanding fundamental microbial biology and for developing biotechnology tools. Clustered,
regularly interspaced, short palindromic repeats (CRISPR) loci encode three types of mechanistically
different RNA-guided DNA cleavage enzymes that degrade invasive DNA while avoiding self-DNA.
Understanding the molecular mechanisms of how these distinct DNA cleavage enzymes control
their activities has important implications in basic enzymology, antibiotics resistance epidemics,
human microbiome research, and genome editing. The Li laboratory has identified and purified
representative members of two major types (Types II and III) of CRISPR-Cas DNA cleavage enzymes
and is poised to unveil novel molecular mechanisms as well as to develop useful tools. Though both
types are RNA-guided and invader-specific, these nucleases have drastically different in enzyme
composition and activation mechanisms. An integrated approach ranging from cell-based assays, to
structural biology and to fundamental enzymology will be employed to compare and contrast the mode
of DNA interference by these nucleases, leading to an understanding of how microbe impact human
health and biosphere and to an ultimate goal of developing CRISPR-based technology. The Li
laboratory has assembled a team of scientists with complementary expertise in microbiology, nucleic
acid biochemistry, mammalian cell biology, X-ray crystallography, and high-throughput cryogenic
electron microscopy, in order to maximize the impact while mitigating risks of the research.
Relevance: The CRISPR elements are found in more than 40% bacteria and are critical to
maintenance of the overall microbial environment. The frequent occurrence of CRISPR in medically
important bacteria that include but not limited to Yersinia pestis, Mycobacterium tuberculosis,
Haemophilus influenzae, Helicobacter pylori, Neisseria meningitides, Vibrio vulnificus, Staphylococcus
aureus, Salmonella Typhi, Clostridium tetani, and human microbiome relates CRISPR directly to human
health. A thorough understanding of the CRISPR immunity has important implications in eradicating
virulence and creating new antimicrobial strategies. While one of the CRISPR enzymes, namely Cas9,
has been repurposed to serve as a user-specified genome-editing tool with ever-increasing popularity,
we are yet to unleash the full potential of the CRISPR-derived tools in biomedical applications. The
proposed research is aimed at overcoming current limitations while expanding the capability.
描述:最近发现细菌和古细菌采用 RNA 引导的 DNA 切割
防御入侵遗传因素的机制提供了前所未有的机会
用于了解基础微生物生物学和开发生物技术工具。簇状,
规则间隔的短回文重复序列 (CRISPR) 位点机械地编码三种类型
不同的 RNA 引导 DNA 切割酶可降解侵入性 DNA,同时避免自身 DNA。
了解这些不同 DNA 切割酶如何控制的分子机制
它们的活动对基础酶学、抗生素耐药性流行病、
人类微生物组研究和基因组编辑。李实验室已鉴定并纯化
CRISPR-Cas DNA切割酶两大类(II型和III型)的代表成员
并准备揭示新的分子机制并开发有用的工具。虽然两者
类型是RNA引导的和入侵者特异性的,这些核酸酶在酶方面有很大的不同
组成和激活机制。一种综合方法,范围从基于细胞的测定到
将采用结构生物学和基础酶学来比较和对比模式
这些核酸酶对 DNA 的干扰,有助于了解微生物如何影响人类
健康和生物圈,以及开发基于 CRISPR 的技术的最终目标。黎族
实验室组建了一支在微生物学、核酸学等领域具有互补专业知识的科学家团队
酸性生物化学、哺乳动物细胞生物学、X 射线晶体学和高通量低温
电子显微镜,以最大限度地发挥影响,同时降低研究风险。
相关性:CRISPR 元件存在于超过 40% 的细菌中,对于
维持整体微生物环境。 CRISPR在医学领域的频繁出现
重要的细菌,包括但不限于鼠疫耶尔森氏菌、结核分枝杆菌、
流感嗜血杆菌、幽门螺杆菌、脑膜炎奈瑟菌、创伤弧菌、葡萄球菌
金黄色葡萄球菌、伤寒沙门氏菌、破伤风梭菌和人类微生物组将 CRISPR 直接与人类联系起来
健康。深入了解 CRISPR 免疫对于根除病毒具有重要意义
毒力并创造新的抗菌策略。而其中一种 CRISPR 酶,即 Cas9,
已被重新定位为用户指定的基因组编辑工具,并且越来越受欢迎,
我们尚未充分发挥 CRISPR 衍生工具在生物医学应用中的全部潜力。这
拟议的研究旨在克服当前的局限性,同时扩展能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Li其他文献
Low temperature methane steam reforming for SOFC
SOFC 低温甲烷蒸汽重整
- DOI:
- 发表时间:
2015-06 - 期刊:
- 影响因子:0
- 作者:
Zhongchao Dong;Chunwen Sun;Hong Li;Liquan Chen - 通讯作者:
Liquan Chen
Hong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Li', 18)}}的其他基金
In utero rescue of cleft lip and palate in a humanized mouse model
人源化小鼠模型中唇裂和腭裂的子宫内抢救
- 批准号:
10645829 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
- 批准号:
10432118 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
- 批准号:
10633187 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
- 批准号:
10284443 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Structural Biology Studies of Ribosome Biogenesis Network
核糖体生物发生网络的结构生物学研究
- 批准号:
10389719 - 财政年份:2018
- 资助金额:
$ 35.38万 - 项目类别:
Structural Biology Studies of Ribosome Biogenesis Network
核糖体生物发生网络的结构生物学研究
- 批准号:
10249225 - 财政年份:2018
- 资助金额:
$ 35.38万 - 项目类别:
Structures of RNA processing and Silencing Enzymes in Prokaryotes
原核生物中 RNA 加工和沉默酶的结构
- 批准号:
8461958 - 财政年份:2012
- 资助金额:
$ 35.38万 - 项目类别:
相似国自然基金
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可逆相分离构建靶向纳米抗生素用于克服CRE多重耐药机制的研究
- 批准号:82373781
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
基于量子点指纹图谱和深度卷积神经网络的水体抗生素检测方法研究
- 批准号:42307546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10303678 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10415200 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Molecular Mechanisms Of Modular Nuclease Domains
模块化核酸酶结构域的分子机制
- 批准号:
10794725 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Molecular mechanisms of modular nuclease domains
模块化核酸酶结构域的分子机制
- 批准号:
10274492 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别: