The Role of Exosomes in Mesenchymal Stem Cell-Mediated Enhancement of Cardiac Contractility
外泌体在间充质干细胞介导的心脏收缩力增强中的作用
基本信息
- 批准号:9396770
- 负责人:
- 金额:$ 4.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-18 至 2021-08-17
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressApoptoticBiochemistryBiological AssayCa(2+)-Transporting ATPaseCardiacCardiac MyocytesCardiovascular DiseasesCellsCellular biologyClinicalClinical TrialsCouplingDataDilated CardiomyopathyDimensionsDiseaseElectrophysiology (science)Endoplasmic ReticulumEngineeringFibrosisFoundationsFutureGene ExpressionGeneticHeartHeart failureHumanHuman EngineeringIn VitroIon ChannelL-Type Calcium ChannelsLeadMediatingMediator of activation proteinMesenchymal Stem CellsMicroRNAsMolecularMotivationMyocardiumNational Heart, Lung, and Blood InstituteOutputParacrine CommunicationPatientsPerformancePhysiciansPlayPreparationPumpRecoveryResearchRiskRoleScientistSignal TransductionSolidSystems BiologyTestingTissue EngineeringTissue ModelTissuesTrainingTransplantationUnited States National Institutes of Healthangiogenesiscareercoronary fibrosisdesignexosomehuman stem cellsimmunoregulationimprovedin vitro Modelinhibitor/antagonistinnovationinsightinterestmRNA Expressionmathematical modelmultidisciplinarymutantnanoparticlenon-geneticnovelparacrinephospholambanrepairedstem cell biology
项目摘要
PROJECT SUMMARY
An emerging therapy for non-ischemic cardiomyopathy involves the delivery of human mesenchymal stem
cells (hMSCs). Clinical trials document modest benefits on cardiac contractility, underscoring a need to better
understand and exploit the underlying mechanisms governing hMSCs-cardiomyocyte (hCMs) interactome.
Recent studies on hMSC-mediated heart therapies demonstrated that paracrine signaling—via secreted
factors—is a crucial mediator of reduced cardiac fibrosis and enhanced angiogenesis. Moreover, hMSC
paracrine factors have been shown to impact contractility by altering cardiomyocyte ion channel/pump activity.
However, these findings fail to identify the key components of the hMSC secretome for enhancing contractility.
We propose utilizing three-dimensional human engineered cardiac tissues (hECTs) as an in vitro model to
investigate the role of hMSC exosomes in enhancement of cardiac contractility.
Our lab recently discovered that hMSCs enhance hECT contractile force predominantly through paracrine
signaling, counteracting adverse risks of hMSC-hCM heterocellular coupling. Importantly, we discovered that
the exosomal component of the hMSC secretome is necessary and sufficient for hMSC-paracrine mediated
enhancement of hECT contractility. Furthermore, by utilizing a systems biology approach and integrating hECT
contractile function results with exosomal miRNA data, we predicted exosomal miRNA-21 as a lead candidate
responsible for the favorable contractile effects of hMSC paracrine signaling. We later validated with qPCR that
miRNA-21 levels are increased in hECTs supplemented with hMSC exosomes and hMSC total conditioned
media relative to control, motivating our central hypothesis that exosomal miRNA-21 plays a key role in hMSC
paracrine-mediated enhancement of human engineered cardiac tissue contractile performance.
In testing this hypothesis, I will directly address an NHLBI topic of special interest (HL-142) by studying the
role of exosomes as paracrine mediators in cardiovascular disease. In Aim 1, I will identify the role of
exosomal miRNA-21 in hMSC-mediated enhancement of hECT contractility by: 1) treating hECTs with
exosomes derived from hMSCs with miRNA-21 inhibitor (Sub-aim 1A); and 2) formulated lipidoid nanoparticle
delivery of miRNA-21 mimic into hECTs (Sub-aim 1B). In Aim 2, I will test the role of hMSC exosomes on
recovery of contractility using in vitro hECT models of acquired (Sub-aim 2A) and genetic (Sub-aim 2B) non-
ischemic heart failure.
Overall, the project is designed to frame the research within a clinical context, and provide a rigorous multi-
disciplinary training in tissue engineering, systems biology, electrophysiology, stem cell biology, and
biochemistry as a solid foundation on which to build my career as a future physician-scientist.
项目摘要
非缺血性心肌病的新兴疗法涉及人类间充质茎的递送
细胞(HMSC)。临床试验文件对心脏收缩性的适度益处,强调了更好的需求
了解并利用有关HMSCS-毛肌细胞(HCMS)Interactome的基本机制。
关于HMSC介导的心脏疗法的最新研究表明,旁分泌信号传导-VIA分泌
因素 - 是降低心脏纤维化和增强血管生成的关键介体。此外,HMSC
旁分泌因子已显示通过改变心肌细胞通道/泵活性来影响收缩力。
但是,这些发现无法识别HMSC分泌组的关键组成部分,以增强收缩力。
我们建议利用三维人类工程心脏组织(HECT)作为体外模型
研究HMSC外泌体在增强心脏收缩力中的作用。
我们的实验室最近发现,HMSCS主要通过旁分泌增强了收缩力
信号传导,抵消HMSC-HCM杂细胞耦合的不良风险。重要的是,我们发现
HMSC分泌组的外泌体成分是必需的,足以介导HMSC-核酸
增强收缩力的增强。此外,通过使用系统生物学方法并整合Hect
收缩功能通过外泌体miRNA数据结果,我们预测外泌体miRNA-21作为铅候选者
负责HMSC旁分泌信号传导的收缩效应。我们后来用qpcr验证了
补充HMSC外泌体和HMSC总条件的miRNA-21水平增加
媒体相对于控制,激发了我们的中心假设,即外泌体miRNA-21在HMSC中起关键作用
旁分泌介导的人类工程性心脏组织收缩性能的增强。
在检验该假设时,我将通过研究该假设直接解决一个特殊关注的NHLBI主题(HL-142)
外泌体作为心血管疾病中旁分泌介质的作用。在AIM 1中,我将确定
HMSC介导的HECT收缩力增强中的外泌体miRNA-21通过:1)用
具有miRNA-21抑制剂(sub-aim 1a)的HMSC衍生的外泌体; 2)配制的脂肪纳米颗粒
将miRNA-21模拟于小公顷(子1B)传递。在AIM 2中,我将测试HMSC外泌体的作用
使用获得的(sub-aim 2a)和遗传(sub-aim 2b)的非体外HECT模型恢复收缩力
缺血性心力衰竭。
总体而言,该项目旨在在临床背景下进行研究,并提供严格的多种多样
组织工程,系统生物学,电生理学,干细胞生物学和
生物化学是建立我作为未来身体科学家的职业的坚实基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Mayourian其他文献
Joshua Mayourian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Mayourian', 18)}}的其他基金
The Role of Exosomes in Mesenchymal Stem Cell-Mediated Enhancement of Cardiac Contractility
外泌体在间充质干细胞介导的心脏收缩力增强中的作用
- 批准号:
9592986 - 财政年份:2017
- 资助金额:
$ 4.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Molecular Origins and Evolution to Chemoresistance in Germ Cell Tumors
生殖细胞肿瘤化疗耐药的分子起源和进化
- 批准号:
10773483 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Mechanisms by which trophoblasts recruit T cells to the placental villi during maternal HIV and CMV co-infection
母体 HIV 和 CMV 合并感染期间滋养层将 T 细胞募集至胎盘绒毛的机制
- 批准号:
10080877 - 财政年份:2020
- 资助金额:
$ 4.17万 - 项目类别:
Mechanisms by which trophoblasts recruit T cells to the placental villi during maternal HIV and CMV co-infection
母体 HIV 和 CMV 合并感染期间滋养层将 T 细胞募集至胎盘绒毛的机制
- 批准号:
10223400 - 财政年份:2020
- 资助金额:
$ 4.17万 - 项目类别: