Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
基本信息
- 批准号:9382739
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAddressAffectAftercareAnimal ModelBehaviorBehavioralBiochemicalBiochemical MarkersBioenergeticsBrainBrain InjuriesCell Differentiation processCell MaturationCell RespirationCellsCerebrumChildChronicCognitionDataDependenceDevelopmentEnergy MetabolismEnergy-Generating ResourcesEpidermal Growth FactorEpidermal Growth Factor ReceptorExcisionFailureGlial Fibrillary Acidic ProteinGlucoseGrowthGrowth FactorHIF1A geneHeparin BindingHippocampus (Brain)HypoxiaImpaired cognitionImpairmentInfantInjuryKnowledgeLearningLearning DisabilitiesLifeMeasuresMediator of activation proteinMemory impairmentMetabolicMitochondriaMitochondrial ProteinsMusN-acetylaspartateNeonatal Brain InjuryNeurogliaNuclear Magnetic ResonanceOutcomeOxidative StressPDH kinasePerinatal Brain InjuryPerinatal HypoxiaPredispositionPremature BirthPremature InfantPreterm brain injuryProcessProductionProteinsPublic HealthPublishingRadialRecoveryRecovery of FunctionResearchRodent ModelStem cellsStressStructureTestingTimeTreatment FactorUndifferentiatedWorkbasecell typecritical periodgray matterimprovedinhibitor/antagonistlung injurymitochondrial dysfunctionmitochondrial metabolismnerve stem cellneurobehavioralneuromechanismnovelprematurepreventpyruvate dehydrogenaserelating to nervous systemrestorationstemwhite matter
项目摘要
PROJECT SUMMARY ABSTRACT
Long-term cognitive impairment and learning disabilities are a major public health concern that affects more
than half of infants born very preterm with immature lung injury. Such infants have a global delay in cerebral
maturation of gray and white matter structures, likely caused by high susceptibility to hypoxia-induced oxidative
stress during this critical period. This stress can result in mitochondrial dysfunction. If mitochondrial-dependent
oxidative metabolism is required for immature progenitor cells to mature, then mitochondrial dysfunction can
result in failure of timely progenitor cell maturation. Little is known about the metabolic alterations or the
dependence of neural progenitor cell maturation on mitochondrial metabolism in the developing brain. Our
work will fill this gap in knowledge. We use a rodent model of chronic hypoxia to recapitulate the immature lung
injury commonly found in very preterm infants, which causes global gray and white matter cellular dysmaturity
and associated ultrastructural and behavioral deficits. In this study, we will investigate the metabolic effects of
hypoxia on hippocampal dysmaturation and determine the developmental outcome of mitochondrial disruption.
Our preliminary data on the hippocampus indicate that: i) hypoxia causes long-term decreases in biochemical
markers of mitochondrial function; ii) hypoxia impairs expression of pyruvate dehydrogenase E1α independent
of its inhibitors; and iii) conditional removal of pyruvate dehydrogenase E1α from GFAP-expressing radial glia
stem cells prevents their maturation. A potential target for promoting recovery after perinatal brain injury is
timely restoration of mitochondrial function and oxidative metabolism. Our published and preliminary data
strongly suggest the novel findings that intranasal heparin-binding epidermal growth factor [HB-EGF] treatment
after hypoxia may reverse hypoxia-induced cellular dysmaturation, restore mitochondrially produced N-acetyl
aspartate, and ameliorate neurobehavioral deficits by targeting the mitochondria. We hypothesize that
mitochondrial dysfunction results in delayed development of hippocampal neural progenitor cell capacity to
perform oxidative energy metabolism, thus preventing their maturation. We will test the hypothesis that
restoring mitochondrial function will enable these cells to meet their bioenergetic demands, permitting timely
cellular maturation and recovery of function in the hippocampus. These hypotheses will be tested in three
specific aims. In Aim 1, we will determine whether hypoxia impairs mitochondrial function in the hippocampus.
In Aim 2, we will determine whether hypoxia or cell-specific removal of pyruvate dehydrogenase E1α in
hippocampal neural progenitor cells delays differentiation and hippocampal behavioral deficits. In Aim 3, we
will determine whether intranasal HB-EGF treatment after hypoxia enhances mitochondrial function.
Successful completion of these aims will elucidate a fundamental biochemical mechanism that determines
differentiation failure of neural progenitor cells after hypoxia-induced injury and define a novel metabolic
mechanism by which HB-EGF facilitates cellular and functional recovery after neonatal brain injury.
项目概要摘要
长期认知障碍和学习障碍是影响更多人的主要公共卫生问题
超过一半的早产儿患有未成熟的肺损伤,此类婴儿的大脑发育迟缓。
灰质和白质结构的成熟,可能是由于对缺氧诱导的氧化高度敏感所致
如果线粒体依赖性,这种压力可能会导致线粒体功能障碍。
未成熟的祖细胞成熟需要氧化代谢,那么线粒体功能障碍可以
导致祖细胞不能及时成熟,但对于代谢改变或代谢变化知之甚少。
神经祖细胞成熟对发育中大脑中线粒体代谢的依赖性。
我们的工作将填补这一知识空白。我们使用慢性缺氧的啮齿动物模型来重现未成熟的肺。
损伤常见于早产儿,导致整体灰质和白质细胞发育不良
以及相关的超微结构和行为缺陷在这项研究中,我们将研究代谢的影响。
缺氧对海马发育不良的影响并确定线粒体破坏的发育结果。
我们对海马体的初步数据表明: i) 缺氧导致生化水平长期下降
线粒体功能标志物;ii) 缺氧损害丙酮酸脱氢酶 E1α 的表达
其抑制剂;以及 iii) 有条件地从表达 GFAP 的放射状胶质细胞中去除丙酮酸脱氢酶 E1α
干细胞阻止其成熟是促进围产期脑损伤后恢复的潜在目标。
及时恢复线粒体功能和氧化代谢。
强烈建议鼻内肝素结合表皮生长因子 [HB-EGF] 治疗的新发现
缺氧后可能会逆转缺氧引起的细胞成熟障碍,恢复线粒体产生的 N-乙酰基
天冬氨酸,并通过靶向线粒体改善神经行为缺陷。
线粒体功能障碍导致海马神经祖细胞发育迟缓
进行氧化能量代谢,从而阻止它们成熟我们将检验以下假设:
恢复线粒体功能将使这些细胞能够满足其生物能量需求,从而及时
海马细胞的成熟和功能的恢复将在三个方面进行检验。
在目标 1 中,我们将确定缺氧是否会损害海马体的线粒体功能。
在目标 2 中,我们将确定缺氧或细胞特异性去除丙酮酸脱氢酶 E1α
海马神经祖细胞延迟分化和海马行为缺陷 在目标 3 中,我们。
将确定缺氧后鼻内 HB-EGF 治疗是否增强线粒体功能。
成功完成这些目标将阐明一个基本的生化机制,该机制决定了
缺氧诱导损伤后神经祖细胞的分化失败并定义了一种新的代谢
HB-EGF 促进新生儿脑损伤后细胞和功能恢复的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Scafidi其他文献
Joseph Scafidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Scafidi', 18)}}的其他基金
Coordination of fatty acid metabolism following neonatal brain injury from preterm birth
早产新生儿脑损伤后脂肪酸代谢的协调
- 批准号:
10641924 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Coordination of fatty acid metabolism following neonatal brain injury from preterm birth
早产新生儿脑损伤后脂肪酸代谢的协调
- 批准号:
10539030 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
- 批准号:
10240636 - 财政年份:2017
- 资助金额:
$ 39.4万 - 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
- 批准号:
10328820 - 财政年份:2017
- 资助金额:
$ 39.4万 - 项目类别:
Mechanisms regulating KCC2 hypofunction during refractory seizures in a mouse model of ischemic neonatal seizures
缺血性新生儿癫痫发作小鼠难治性癫痫发作期间 KCC2 功能低下的调节机制
- 批准号:
10205121 - 财政年份:2017
- 资助金额:
$ 39.4万 - 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
- 批准号:
9752675 - 财政年份:2017
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
- 批准号:
9098869 - 财政年份:2015
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
- 批准号:
8091982 - 财政年份:2011
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
- 批准号:
8436277 - 财政年份:2011
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
- 批准号:
8233981 - 财政年份:2011
- 资助金额:
$ 39.4万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别: