Automated Speech Analysis: A Marker of Drug Intoxication & Treatment Outcome

自动语音分析:药物中毒的标志

基本信息

项目摘要

 DESCRIPTION (provided by applicant): A major limitation of existing assessments of clinically-relevant mental states related to drug use, abuse, and treatment is that self-report measures rely on the capacity and motivation to accurately report one's internal experiences. A potential alternative is presented by emerging computer-based natural language processing methods that can extract fine-grained semantic, structural, and syntactic features from free speech1, potentially providing a unique 'window into the mind.' These methods are widely used in industry2, yet remain largely unknown in clinical research. To begin to assess the potential of these advanced analytic methods in clinical research, we recently partnered with IBM computer science researchers to test computer-based analysis of speech semantic structure. In preliminary work, we were able to demonstrate that such methods could detect acute drug intoxication3 and accurately predicted the development of psychosis in clinical risk states4. Here, we propose to build on these highly promising initial findings, conducting three secondary data analyses to rapidly and cost-effectively advance this novel direction. Projects 1 and 2 will extend our preliminary work on speech markers of mental state changes during acute drug intoxication. In Project 1, we will assess speech semantic, structural, and syntactic features as markers of mental state changes due to MDMA (0, 0.75, 1.5 mg/kg; oral). In Project 2, we will extend these findings to another drug, assessing speech markers of intoxication with LSD (0, 70 μg; intravenous). These projects are possible because we have access to existing transcripts of free speech from within-subject, controlled laboratory studies of the effects of MDMA (N = 77) and LSD (N = 19). Potential future uses for these methods could include rapid characterization of the effects of emerging drugs and, potentially, detection of acute drug intoxication in the absence of biochemical confirmation. Project 3 will assess the use of speech analysis as a prognostic marker in substance abuse treatment. Specifically, we will use speech transcripts (N = 50) from a currently ongoing study to assess whether features extracted from baseline free speech can predict treatment outcome in cocaine users undergoing 12 weeks of CBT relapse prevention. Self-report5,6 and manual coding of speech7-9 suggest that motivation to change may be a predictor of treatment outcome for substance use disorders: we expect that the fine-grained computational methods we will employ will allow the development of more accurate predictive models. The capacity to use automated methods to detect mental states from free speech has wide ranging, potentially transformative implications for addiction medicine and psychiatry more broadly4,10. Results of the proposed secondary analyses projects will efficiently advance understanding of how automated speech analysis, a non-invasive and cost- effective assessment method, could be used in clinical practice and research about drug abuse. More broadly, results may contribute to the empirical basis for the development of automated, objective, speech- based diagnostic and prognostic tests in psychiatry.
 描述(由适用提供):与药物使用,滥用和治疗有关的临床相关心理状态的现有评估的主要局限性是,自我报告措施依赖于能力和动机来准确地报告自己的内部经历。潜在的替代方法是通过新兴的基于计算机的自然语言处理方法提出的,该方法可以从wifle Speeps1中提取精细的语义,结构和句法特征,从而可能提供独特的“进入思想窗口”。这些方法在行业2中广泛使用,但在临床研究中仍然在很大程度上尚不清楚。为了开始评估这些高级分析方法在临床研究中的潜力,我们最近与IBM计算机科学研究人员合作测试了基于计算机的语音语义结构分析。在初步工作中,我们能够证明这种方法可以检测到急性药物中毒3,并准确预测临床风险状态中精神病的发展4。在这里,我们建议建立在这些高度有希望的初始发现的基础上,并进行了三个二级数据分析,以迅速和成本效益地推进这一新颖方向。项目1和2将延长我们在急性药物中毒期间精神状态变化的语音标记的初步工作。在项目1中,我们将评估语音语义,结构和句法特征作为MDMA引起的精神状态变化的标志(0,0.75,1.5 mg/kg;口服)。在项目2中,我们将将这些发现扩展到另一种药物,评估使用LSD(0,70μg;静脉内)中毒的语音标记。这些项目之所以可能,是因为我们可以从受试者内部的言论自由,对MDMA(n = 77)和LSD(n = 19)的影响的对照实验室研究中访问现有的言论。这些方法的潜在未来用途可能包括快速表征新兴药物的作用,并可能在没有生化确认的情况下检测急性药物肠毒性。项目3将评估语音分析作为药物滥用治疗中的预后标记。具体而言,我们将使用目前正在进行的研究中的语音成绩单(n = 50)来评估从基线言论自由中提取的特征是否可以预测可卡因使用者的治疗结果,该结果正在接受12周的预防CBT缓解。自我报告5,6和语音编码的语音编码7-9表明,改变动机可能是药物使用障碍的治疗结果的预测指标:我们希望我们将采用的细粒度计算方法将允许开发更准确的预测模型。使用自动化方法从言论自由中检测精神状态的能力具有广泛的范围,对成瘾医学和精神病学的潜在变革含义更广泛。4,10。拟议的二级分析项目的结果将有效地提高人们对无创和具有成本效益的评估方法的自动化语音分析如何用于临床实践和有关药物滥用的研究。更广泛地说,结果可能有助于在精神病学中开发自动化,客观,基于语音的诊断和预后测试的经验基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard W Foltin其他文献

Richard W Foltin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard W Foltin', 18)}}的其他基金

Impulsivity In Cocaine Abusers: Relationship to Drug Taking and Treatment Outcome
可卡因滥用者的冲动:与吸毒和治疗结果的关系
  • 批准号:
    8694439
  • 财政年份:
    2014
  • 资助金额:
    $ 8.1万
  • 项目类别:
Impulsivity In Cocaine Abusers: Relationship to Drug Taking and Treatment Outcome
可卡因滥用者的冲动:与吸毒和治疗结果的关系
  • 批准号:
    9040137
  • 财政年份:
    2014
  • 资助金额:
    $ 8.1万
  • 项目类别:
Impulsivity In Cocaine Abusers: Relationship to Drug Taking and Treatment Outcome
可卡因滥用者的冲动:与吸毒和治疗结果的关系
  • 批准号:
    9252429
  • 财政年份:
    2014
  • 资助金额:
    $ 8.1万
  • 项目类别:
Hypocretin Antagonists as a Novel Approach to Medication Development
下丘脑分泌素拮抗剂作为药物开发的新方法
  • 批准号:
    8233458
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Clinical and Preclinical Models in Drug Abuse: Training and Development
药物滥用的临床和临床前模型:培训和开发
  • 批准号:
    8685228
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Hypocretin Antagonists as a Novel Approach to Medication Development
下丘脑分泌素拮抗剂作为药物开发的新方法
  • 批准号:
    8106887
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Hypocretin Antagonists as a Novel Approach to Medication Development
下丘脑分泌素拮抗剂作为药物开发的新方法
  • 批准号:
    8445339
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Clinical and Preclinical Models in Drug Abuse: Training and Development
药物滥用的临床和临床前模型:培训和开发
  • 批准号:
    8488420
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Clinical and Preclinical Models in Drug Abuse: Training and Development
药物滥用的临床和临床前模型:培训和开发
  • 批准号:
    8286888
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:
Clinical and Preclinical Models in Drug Abuse: Training and Development
药物滥用的临床和临床前模型:培训和开发
  • 批准号:
    8164971
  • 财政年份:
    2011
  • 资助金额:
    $ 8.1万
  • 项目类别:

相似国自然基金

α-葡糖苷酶在烟粉虱传播番茄褪绿病毒过程中的作用机制研究
  • 批准号:
    31872932
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
三氯卡班在硝化-反硝化系统中的代谢行为及其对硝化-反硝化生化过程的影响机制
  • 批准号:
    51779089
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
低水平抗生素胁迫下微囊藻的生理生化及水处理行为特征
  • 批准号:
    51708490
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
它在拨动琴弦——细胞对纤连蛋白修饰的弹性基底生化-力学耦合感知过程中整合素行为的研究
  • 批准号:
    31771011
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
DNA计算的生化反应网络动力学行为研究
  • 批准号:
    61772100
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Project 2: Informing oral nicotine pouch regulations to promote public health
项目 2:告知口服尼古丁袋法规以促进公共卫生
  • 批准号:
    10666068
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
New Technologies for Accelerating the Discovery and Characterization of Neuroactives that Address Substance Use Disorders
加速发现和表征解决药物使用障碍的神经活性物质的新技术
  • 批准号:
    10680754
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
  • 批准号:
    10774563
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
Regulation of LDAM by autopahgy in the aging brain
衰老大脑中自噬对 LDAM 的调节
  • 批准号:
    10900994
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
Development of a novel small molecule RPN13 inhibitor and therapeutic for advanced ovarian cancer patients
开发新型小分子 RPN13 抑制剂和治疗晚期卵巢癌患者的药物
  • 批准号:
    10760824
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了