The Mechanism of Manganese Transport of SLC30A10 in Neuronal and Hepatic Systems
SLC30A10 在神经元和肝脏系统中的锰转运机制
基本信息
- 批准号:9327449
- 负责人:
- 金额:$ 4.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAdverse effectsAffectAffinityAgreementAmino AcidsArtificial MembranesBindingBiochemicalBiological AssayBiologyBloodBrainCalorimetryCarrier ProteinsCell LineCell membraneCellsChronicCirrhosisClinicalClinical assessmentsCodeConfocal MicroscopyCopperDNADNA Sequence AlterationDataDepositionDevelopmentDiseaseElementsEndoplasmic ReticulumEnvironmentEnvironmental ExposureExcisionFemaleFollow-Up StudiesFoundationsFutureGenesGenomeGoalsGrowth and Development functionHealthHela CellsHepG2HepaticHepatocyteHomeostasisHumanIdiopathic Parkinson DiseaseIn VitroInductively Coupled Plasma Mass SpectrometryIon TransportIonsIronKineticsKnowledgeLeadLightLiverManganeseMeasurementMeasuresMetabolismMetalsMicroscopyMidbrain structureModelingMolecularMorphologyMotivationMotorMusMutationNerve DegenerationNeurologicNeuronsNutritionalOccupationalPaperParkinson DiseaseParkinsonian DisordersPatientsPharmaceutical PreparationsPharmacology StudyPhysiologicalPlayProcessProtein FamilyProteinsPublishingRecording of previous eventsRegulationReportingResearchRoleSequence HomologySingle Nucleotide PolymorphismSiteStructural ModelsSymptomsSystemTechniquesTestingThermodynamicsTitrationsToxic Environmental SubstancesToxic effectTrainingWorkZincbasebiological systemsbiophysical techniquesclinically significantcognitive functioncohortcytotoxiccytotoxicitydeep sequencingexperimental studyimprovedliver functionmutantnervous system disorderneurotoxicityproteoliposomestherapeutic developmenttherapy developmentzinc-binding protein
项目摘要
Abstract:
Manganese (Mn) is an essential element, but overexposure is cytotoxic and has adverse effects on
neurological health. In humans, Mn-induced neurotoxicity generally occurs due to chronic exposure under
occupational or environmental settings and resembles idiopathic Parkinson’s disease. In some cases, patients
with compromised liver function due to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-
induced parkinsonism in the absence of high exposure. While the nutritional and clinical significance of Mn is
established, cellular mechanisms of Mn homeostasis are still unknown. A breakthrough in our understanding of
Mn metabolism came from the identification of a familial form of parkinsonism reported to occur due to
mutations in SLC30A10. Findings in our lab have determined that SLC30A10 acts as the primary Mn efflux
transporter protein to protect cells against Mn-induced toxicity. Interestingly, SLC30A10 disease-causing
mutants from parkinsonian patients discussed above were unable protect against high Mn.
As Mn is ubiquitous in the environment, our long term goal is to elucidate the role that SLC30A10 plays in
metal-induced neurodegenerative processes, which in turn lead to Parkinson-like symptoms in patients. This
gap in knowledge hinders treatment development and will persist if molecular mechanisms utilized by
SLC30A10 are not understood. Our hypothesis is that SLC30A10 binds and transports Mn with higher affinity
than other essential metals and that this activity is sensitive to cellular environment. We have recently identified
residues of SLC30A10 that are required for Mn efflux activity. However, our studies used cell-based functional
experiments and do not provide the molecular detail of their mechanistic involvement in Mn efflux activity.
To shed light on this, experiments proposed here will determine the Mn transport mechanism of SLC30A10
using a combination of in vitro studies and physiologically relevant cell-based assays. In Aim 1 we will perform
biochemical studies on purified SLC30A10 protein to reveal the mechanism of binding and transport of
SLC30A10. First, isothermal titration calorimetry (ITC) will be used to determine the Mn binding coefficient (KD)
of SLC30A10. Then a proteoliposome transport assay, with artificial membranes containing SLC30A10 will
determine the Mn transport kinetics (KM and Vmax). We will perform a comparison of SLC30A10WT to SLC30A10
efflux mutants identified in our primary screens to elucidate residues directly involved in Mn binding. Aim 2 will
then be performed in cell-based systems. Confocal microscopy will be employed to assess SLC30A10 function
in primary neurons and a hepatic cell line. Quantitative metal measurement ICP-MS will be used to measure
intracellular Mn content and corroborate microscopy findings. Taken together, the findings from this training
plan will improve our understanding of cellular Mn homeostasis as it relates to neurotoxicity and provide
biochemical data on SLC30A10 important for developing therapies against Mn toxicity.
抽象的:
锰(Mn)是人体必需元素,但过度接触具有细胞毒性,会对人体产生不利影响。
在人类中,锰引起的神经毒性通常是由于长期接触锰而发生的。
职业或环境环境,在某些情况下类似于特发性帕金森病。
由于肝硬化等疾病导致肝功能受损,无法排泄锰,可能会出现锰-
在没有高暴露的情况下会诱发帕金森病,而锰的营养和临床意义是。
尽管锰稳态的细胞机制尚未确定,但我们对锰稳态的理解取得了突破。
锰代谢来自于对一种家族性帕金森病的鉴定,据报道,这种帕金森病的发生是由于
我们实验室的研究结果确定 SLC30A10 是主要的 Mn 外流。
转运蛋白保护细胞免受锰诱导的毒性,提示 SLC30A10 致病。
上面讨论的帕金森病患者的突变体无法预防高锰。
由于锰在环境中无处不在,我们的长期目标是阐明 SLC30A10 在
金属引起的神经退行性过程,进而导致患者出现帕金森样症状。
知识差距阻碍了治疗的发展,并且如果利用分子机制,知识差距将持续存在
SLC30A10 尚不清楚,我们的假设是 SLC30A10 以更高的亲和力结合和转运 Mn。
比其他必需金属更重要,并且我们最近发现这种活性对细胞环境敏感。
然而,我们的研究使用了基于细胞的功能。
实验,并且没有提供它们参与锰流出活动的机制的分子细节。
为了阐明这一点,这里提出的实验将确定 SLC30A10 的 Mn 传输机制
在目标 1 中,我们将结合体外研究和生理相关的细胞测定。
对纯化的 SLC30A10 蛋白进行生化研究,揭示其结合和转运机制
首先,等温滴定量热法 (ITC) 将用于确定 Mn 结合系数 (KD)。
然后使用含有 SLC30A10 的人工膜进行蛋白脂质体转运测定。
确定 Mn 传输动力学(KM 和 Vmax) 我们将对 SLC30A10WT 与 SLC30A10 进行比较。
在我们的初步筛选中鉴定出的外排突变体可阐明直接参与 Mn 结合的残基。
然后在基于细胞的系统中进行,将采用共聚焦显微镜来评估 SLC30A10 功能。
原代神经元和肝细胞系中的金属定量测量将使用 ICP-MS 进行测量。
细胞内锰含量和证实的显微镜检查结果一起,是本次培训的结果。
计划将提高我们对细胞锰稳态的理解,因为它与神经毒性有关,并提供
SLC30A10 的生化数据对于开发针对锰毒性的疗法非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles E. Zogzas其他文献
High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers.
突变型荚膜红杆菌反应中心二次 B 侧电子转移的高产率。
- DOI:
10.1016/j.bbabio.2014.07.015 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Lucas L. Kressel;K. Faries;Marc J. Wander;Charles E. Zogzas;Rachel J Mejdrich;D. Hanson;D. Holten;P. Laible;C. Kirmaier - 通讯作者:
C. Kirmaier
Charles E. Zogzas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
- 批准号:
10822482 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
- 批准号:
10718390 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Development of a Selective Mu-Delta Opioid Receptor Heterodimer Antagonist Using a Linked Bivalent Pharmacophore Approach
使用关联二价药效团方法开发选择性 Mu-Delta 阿片受体异二聚体拮抗剂
- 批准号:
9530416 - 财政年份:2018
- 资助金额:
$ 4.04万 - 项目类别:
INHIBITORS OF THE PHD2 ZINC FINGER TO TREAT ANEMIA
PHD2 锌指抑制剂治疗贫血
- 批准号:
9345190 - 财政年份:2017
- 资助金额:
$ 4.04万 - 项目类别: