Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
基本信息
- 批准号:9043103
- 负责人:
- 金额:$ 28.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsArabidopsisBehaviorBindingBiochemicalBiochemical GeneticsBlood VesselsCalendarCellsChromatin Remodeling FactorCircadian RhythmsDeveloping CountriesDevelopmentEnvironmentEukaryotaFaceFailureFlavinsFlowersFoundationsGene ExpressionGene FamilyGenesGeneticGenetic TranscriptionGenomic approachGenomicsGoalsHealthHumanLearningLibrariesLightMammalsMeasurementMeasuresMental DepressionMolecularMolecular ProfilingMonitorNamesOrganismPatternPerceptionPhasePhotoperiodPhotoreceptorsPhysiologicalPlant LeavesPlant ModelPlantsPlayPost-Translational RegulationProteinsRecruitment ActivityRecurrenceRegulationRepressionReproductionResearchRoleRunningSeasonal Affective DisorderSeasonal VariationsSeasonsStudy modelsSystemSystems BiologyTestingTimeTranscription CoactivatorTranscription Repressor/CorepressorTranscriptional Regulationbasechromatin modificationcircadian pacemakerday lengthfunctional genomicsgenetic analysishistone modificationmRNA Expressionmemberprogramsreproductive successresearch studyresponsescreeningtemporal measurementtooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): Organisms that fail to respond appropriately to seasonal change will face severe consequences related to survival and reproduction. For humans, seasonal variation in the amount of light causes Seasonal Affective Disorder (SAD), a recurrent subtype of depression. Although the molecular mechanisms underlying SAD remain elusive, it is known that photoperiodic mechanisms play a significant role in many cases of SAD. Many organisms, including humans, have evolved mechanisms to sense changes in day length (=photoperiod) and integrate seasonal change information into their development. The long-term goal of our research program is to elucidate the molecular mechanisms by which organisms measure changes in day length and adjust their behaviors and development accordingly. Although the molecular mechanisms of photoperiodism have not yet been well described in many organisms, recent advances in the study of the model plant Arabidopsis have increased our molecular understanding of photoperiodic time measurement and have influenced the study of other plant and animal species. In Arabidopsis, the core time-measurement mechanism is circadian-regulated transcription of the floral activator CONSTANS (CO) gene and light-regulated CO protein stability and activity. In this proposal, further characterization o this core mechanism will be done through biochemical, genetic, and genomic approaches. In Aim 1, newly identified transcriptional regulators of CO will be characterized. The findings will elucidate further how the circadian clock plays a role in regulating seasonal response by orchestrating different classes of transcription factors. In Aim 2, time-dependent chromatin modification of CO transcriptional regulation - a new mechanistic layer of understanding - will be studied. Our previous results indicated the involvement of the FKF1 blue-light photoreceptor in posttranslational regulation of CO protein. In Aim 3, the molecular function of FKF1-associating proteins on CO protein stability regulation will be examined. With these three Aims, the mechanisms by which plants monitor daily and seasonal differences through the circadian clock will be analyzed. The findings will impact plant research and our broader understanding of photoperiodism and circadian clocks in mammals and other systems. The types of transcriptional and posttranslational mechanisms present in Arabidopsis are likely conserved among all eukaryotes, thus these findings will contribute to our understanding of fundamental transcriptional regulation. These findings also have the potential to provide clues to the mechanisms involved in SAD. Finally, elucidating the photoperiodic flowering mechanism is important for understanding a major plant reproduction mechanism that is directly applicable to improvements in crop yield, an important contributor to human health especially in developing countries.
描述(由申请人提供):未对季节性变化做出适当反应的生物将面临与生存和繁殖有关的严重后果。对于人类而言,光量的季节性变化会导致季节性情感障碍(SAD),这是抑郁症的经常性亚型。尽管SAD的分子机制仍然难以捉摸,但众所周知,光周期机制在许多SAD的情况下起着重要作用。包括人类在内的许多生物都发展了机制,以感知日长度的变化(= photoperiod),并将季节性变化信息整合到其发展中。我们研究计划的长期目标是阐明生物体测量日长度变化并相应调整其行为和发展的分子机制。尽管在许多生物体中尚未很好地描述光周期的分子机制,但模型植物拟南芥的最新进展增加了我们对光周期时间测量的分子理解,并影响了对其他动植物物种的研究。在拟南芥中,核心时间计量机制是花卉激活剂constans(CO)基因和光调节的CO蛋白稳定性和活性的昼夜节律转录。在此提案中,进一步的表征o该核心机制将通过生化,遗传和基因组方法来完成。在AIM 1中,将表征新确定的CO转录调节器。这些发现将进一步阐明昼夜节律如何通过策划不同类别的转录因子来调节季节性反应中发挥作用。在AIM 2中,将研究CO转录调控的时间依赖性染色质修饰 - 一种新的理解机械层。我们先前的结果表明,FKF1蓝光光感受器参与了CO蛋白的翻译后调节。在AIM 3中,将检查FKF1缔解蛋白在CO蛋白稳定性调节中的分子功能。有了这三个目标,将分析植物通过昼夜节律监测日常和季节性差异的机制。这些发现将影响植物的研究以及我们对哺乳动物和其他系统中光周期和昼夜节律时钟的更广泛理解。拟南芥中存在的转录和翻译后机制的类型可能在所有真核生物中保守,因此这些发现将有助于我们对基本转录调节的理解。这些发现也有可能为SAD所涉及的机制提供线索。最后,阐明光周期开花机制对于理解一种主要适用于改善作物产量的主要植物繁殖机制很重要,这是对人类健康的重要贡献,尤其是在发展中国家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKATO IMAIZUMI其他文献
TAKATO IMAIZUMI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKATO IMAIZUMI', 18)}}的其他基金
Molecular Mechanisms of Seasonal Time Measurement
季节时间测量的分子机制
- 批准号:
10457296 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7791317 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
8503273 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7268264 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7596474 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7547634 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7714787 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
8044686 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanisms of Seasonal Time Measurement
季节时间测量的分子机制
- 批准号:
10226082 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanisms of Seasonal Time Measurement
季节时间测量的分子机制
- 批准号:
9816343 - 财政年份:2007
- 资助金额:
$ 28.35万 - 项目类别:
相似国自然基金
拟南芥转录因子ERF012调控ABA信号和种子萌发的分子机制
- 批准号:32300281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二价染色质调控拟南芥响应发育与环境信号的分子与表观遗传机理研究
- 批准号:32330007
- 批准年份:2023
- 资助金额:219 万元
- 项目类别:重点项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥SICKLE调控应激颗粒和耐热性的分子机制
- 批准号:32370324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥PSY1多肽与其受体PSY1R协同抑制叶片衰老的机理研究
- 批准号:32370374
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular Mechanisms of Stem Cell Homeostasis in Arabidopsis
拟南芥干细胞稳态的分子机制
- 批准号:
10278380 - 财政年份:2021
- 资助金额:
$ 28.35万 - 项目类别:
Exploring the Role of OSM-9 in Odor Aversive Learning and Long-term Memory
探索 OSM-9 在气味厌恶学习和长期记忆中的作用
- 批准号:
10552551 - 财政年份:2021
- 资助金额:
$ 28.35万 - 项目类别:
Molecular Mechanisms of Stem Cell Homeostasis in Arabidopsis
拟南芥干细胞稳态的分子机制
- 批准号:
10642908 - 财政年份:2021
- 资助金额:
$ 28.35万 - 项目类别:
Exploring the Role of OSM-9 in Odor Aversive Learning and Long-term Memory
探索 OSM-9 在气味厌恶学习和长期记忆中的作用
- 批准号:
10685606 - 财政年份:2021
- 资助金额:
$ 28.35万 - 项目类别:
Modeling stress-induced, de novo epiallele architecture in the model Arabidopsis as a tractable entrypoint
将拟南芥模型中应激诱导的从头表观等位基因结构建模为易于处理的入口点
- 批准号:
10454432 - 财政年份:2019
- 资助金额:
$ 28.35万 - 项目类别: