Multi-Frequency Synthesis and Orientation Control in SFDI
SFDI 中的多频合成和定向控制
基本信息
- 批准号:8494045
- 负责人:
- 金额:$ 16.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBedsBiologicalBiopsyBone TissueBrainCaringCollagenComplexComputer SimulationComputer softwareCustomDataDependenceDiffusionDiseaseEffectivenessElementsEngineeringEquationFluorescenceFrequenciesGoalsHeterogeneityHistocompatibility TestingImageImaging technologyIrisLeadLengthLightMapsMeasurementMeasuresMechanicsMedical ImagingMethodsMicroscopicModelingMonitorMuscleOperative Surgical ProceduresOpticsPatternPhaseProcessPropertyRelative (related person)ResolutionSamplingShapesSimulateSkinSolutionsSpace PerceptionSpeedStructureSurfaceTechniquesTechnologyTestingThickTimeTissue SampleTissuesValidationWritingabsorptionattenuationbasebonebrain tissuecharge coupled device cameracost effectivedata acquisitiondesign and constructionimaging modalityinnovationinstrumentresponsetissue phantomtomographywhite matter
项目摘要
DESCRIPTION (provided by applicant): Spatial Frequency Domain Imaging (SFDI) is a model-based, wide-field, non-contact method for measuring the absorption, scattering, and fluorescence properties of biological tissue. Optical properties are determined in each pixel simultaneously, by measuring the attenuation (or fluorescence) of sinusoidal patterns of light projected onto the sample at varying spatial frequencies and phases. Images are demodulated by processing 3 phase-shifted views of the sample. The mean interrogation depth at a given wavelength is controlled by the spatial frequency of projection, and frequency-dependent differences in path length are used to calculate tissue optical properties using computational models. Because 3 specific phases are required for each projected frequency, care must be taken to perfectly sequence all projections and camera triggers. While each of these processes is fairly rapid, together they can slow the acquisition to a fraction of the camera frame rate. In order to overcome this limitation and facilitate real-time SFDI, we will develop new methods using "frequency synthesis" - multiple frequencies synthesized into customized projection patterns. These patterns will be optimized for speed and frequency-dependent information content in order to facilitate rapid and accurate optical property measurements, probe buried objects, and perform tomography. When properly selected, frequency synthesized projections can potentially decrease the minimum acquisition time to the frame rate of the camera, allowing real-time SFDI and SFD tomography. The ability to project custom patterns not only allows us to generate multi-frequency components, it also adds the ability to change their orientation. This allows us to explore a new mode of contrast based on probing tissue structures that are aligned with the direction of the projected pattern. This is due to the fact that many tissue types, including bone, muscle, skin, and white matter in the brain, have orientated internal structures such that the degree of optical scattering depends on the direction of light propagation. The scattering direction of these oriented tissues is determined by their microscopic structure and obeys a diffusion equation. We will derive accurate solutions to the anisotropic diffusion equation in the spatial frequency domain. In an ordered medium, the attenuation of sinusoidal patterns depends on the relative orientation of the spatial frequency pattern and scatterer direction. Thus, by projecting multiple spatial frequencies in different directions and measuring the attenuation, we will be able to image the spatially varying scattering orientation over a large
field of view. We expect that the combination of spatial frequency synthesis and orientation control will lead to new methods for quantitative, real-time imaging and tomography in thick tissues, as well as the characterization of exciting new contrast mechanisms based on an optical diffusion tensor.
描述(由申请人提供):空间频域成像(SFDI)是一种基于模型的宽视场非接触方法,用于测量生物组织的吸收、散射和荧光特性。通过测量以不同空间频率和相位投射到样品上的正弦曲线光图案的衰减(或荧光),同时确定每个像素的光学特性。通过处理样本的 3 个相移视图来解调图像。给定波长下的平均询问深度由投影的空间频率控制,并且路径长度中与频率相关的差异用于使用计算模型来计算组织光学特性。由于每个投影频率需要 3 个特定阶段,因此必须小心地对所有投影和相机触发器进行完美排序。虽然这些过程中的每一个都相当快,但它们一起可以将采集速度减慢到相机帧速率的一小部分。为了克服这一限制并促进实时 SFDI,我们将开发使用“频率合成”的新方法 - 将多个频率合成为定制的投影模式。这些图案将针对速度和频率相关的信息内容进行优化,以促进快速、准确的光学特性测量、探测埋藏物体并进行断层扫描。如果选择正确,频率合成投影可能会减少相机帧速率的最小采集时间,从而实现实时 SFDI 和 SFD 断层扫描。 投影自定义模式的能力不仅使我们能够生成多频率分量,还增加了改变其方向的能力。这使我们能够探索一种基于探测与投影图案方向对齐的组织结构的新对比度模式。这是因为许多组织类型,包括骨骼、肌肉、皮肤和大脑中的白质,都具有定向的内部结构,使得光学散射的程度取决于光传播的方向。这些定向组织的散射方向由其微观结构决定并服从扩散方程。我们将在空间频域中导出各向异性扩散方程的精确解。在有序介质中,正弦图案的衰减取决于空间频率图案和散射体方向的相对方向。因此,通过在不同方向上投射多个空间频率并测量衰减,我们将能够对大范围内空间变化的散射方向进行成像。
视野。我们期望空间频率合成和方向控制的结合将带来厚组织中定量、实时成像和断层扫描的新方法,以及基于光学扩散张量的令人兴奋的新对比机制的表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce J. Tromberg其他文献
Longitudinal Hemodynamic Characterization of Patients with Sickle Cell Disease with Multi-Modal Optical Techniques
采用多模态光学技术对镰状细胞病患者进行纵向血流动力学表征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Timothy Quang;I. Frey;Julia Xu;Golnar Mostashari;Helen E. Parker;Anna K. Conrey;Dina Parekh;Ruth Pierre Charles;Brian Hill;S. Thein;Bruce J. Tromberg - 通讯作者:
Bruce J. Tromberg
Bruce J. Tromberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce J. Tromberg', 18)}}的其他基金
Optical Tomography of Intrinsic Signals in Rat Cortex
大鼠皮层固有信号的光学断层扫描
- 批准号:
8464292 - 财政年份:2012
- 资助金额:
$ 16.93万 - 项目类别:
Optical Tomography of Intrinsic Signals in Rat Cortex
大鼠皮层固有信号的光学断层扫描
- 批准号:
8285930 - 财政年份:2012
- 资助金额:
$ 16.93万 - 项目类别:
Multi-Frequency Synthesis and Orientation Control in SFDI
SFDI 中的多频合成和定向控制
- 批准号:
8386487 - 财政年份:2012
- 资助金额:
$ 16.93万 - 项目类别:
ANALYSIS OF SUB SURFACE HETEROGENEITIES, USING SPATIALLY MODULATED ILLUMINATION
使用空间调制照明分析次表面异质性
- 批准号:
8362596 - 财政年份:2011
- 资助金额:
$ 16.93万 - 项目类别:
ACRIN #6691 MONITORING AND PREDICTING BREAST CANCER NEOADJUVANT CHEMOTHERAPY
阿克林
- 批准号:
8362722 - 财政年份:2011
- 资助金额:
$ 16.93万 - 项目类别:
HYPER-SPECTRAL IMAGING USING SPATIALLY-MODULATED ILLUMINATION
使用空间调制照明的超光谱成像
- 批准号:
8362605 - 财政年份:2011
- 资助金额:
$ 16.93万 - 项目类别:
Monitoring Breast Cancer Chemotherapeutic Response using DOSI, MRI, and Biomaker
使用 DOSI、MRI 和 Biomaker 监测乳腺癌化疗反应
- 批准号:
8340233 - 财政年份:2011
- 资助金额:
$ 16.93万 - 项目类别:
相似国自然基金
基于预测与优化协同的医院床位最优管理与调度
- 批准号:72271137
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
Lgr受体在黄体形成和功能维持中的作用与机制
- 批准号:81871169
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
我国大型医院床位适宜规模理论与实证研究
- 批准号:71273274
- 批准年份:2012
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
- 批准号:
10587455 - 财政年份:2023
- 资助金额:
$ 16.93万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 16.93万 - 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 16.93万 - 项目类别:
Data Driven Background Estimation in PET Using Event Energy Information
使用事件能量信息进行 PET 中数据驱动的背景估计
- 批准号:
10644161 - 财政年份:2022
- 资助金额:
$ 16.93万 - 项目类别:
A Genetically Encoded Phosphorescent, Electron Dense Probe for Correlative Light and Electron Microscopy
用于相关光和电子显微镜的基因编码磷光电子致密探针
- 批准号:
10547694 - 财政年份:2022
- 资助金额:
$ 16.93万 - 项目类别: