Control Mechanisms for Matching ATP Supply and Demand in Heart Mitochondria
心脏线粒体中 ATP 供需匹配的控制机制
基本信息
- 批准号:9348184
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Failure to supply energy to match the body's demands limits the functional reserve capacity, and under certain periods of stress, such as ischemia, can lead to irreversible cell and tissue damage. This matching is critical in tissues with high and rapidly fluctuating metabolic rates such as the heart. Mitochondria are the main ATP suppliers to meet cellular demands. The fuel used by mitochondria is transported across the inner mitochondrial membrane to the matrix and produces a source of electrons whose redox-potential energy is, in turn, harnessed by the electron transport chain. The flux of electrons is reflected in oxygen consumption. The energy released from this electron flow is used to transport protons out of the matrix across the inner mitochondrial membrane forming a gradient whose proton-motive force drives ATP synthase to make ATP. This "upstream" regulation is known as the "push" mechanism. A complete description of the ATP synthase control mechanisms is still lacking. Two general mechanisms have been suggested to serve as key regulators: 1) ADP and Pi concentrations; ATP utilization/hydrolysis in the cytosol increases ADP and Pi fluxes to mitochondria and hence the amount of available substrates for ATP production increases; 2) Ca2+ concentration; ATP utilization/hydrolysis is coupled to changes in free cytosolic calcium and mitochondrial Ca2+, the latter controlling Ca2+-dependent activation of certain mitochondrial reaction-rate-determining enzymes taking part in ATP production. At high levels of energy demand the question arises whether parallel to the "push" mechanism signals acting on ATP synthase could also facilitate the electron transport chain redox flux, enhancing the efficiency of ATP production. This effect simulates an apparent additional "pull" on the upstream flux, which causes as a specific proportionate increase in respiration. Proof of such a "pull" mechanism regulated by Ca2+ and its target has not been demonstrated to-date.
Cardiomyocytes contract in response to driven cyclic 'increases' in cytosolic Ca2+ in a response to electrically stimulation. As a consequence of the levels of contractile work, ATP is proportionately utilized by the contractile elements. Therefore, from the demand point of view Ca2+ is a direct effector that might be well positioned to play a role in the energy matching regulatory mechanisms. A correlation has also been shown between cytosolic and mitochondrial Ca2+. Ca2+ enters the mitochondria through the mitochondrial uniporter and is extruded by the mitochondrial Na+/Ca2+ exchanger. This results in mitochondrial Ca2+ accumulation in response to an increase in stimulation frequency or Ca2+ transient amplitude. Therefore, Ca2+ levels in the mitochondria reflect changes in both myocardial work and ATP consumption and, hence, the demand for ATP. It was shown that mitochondrial Ca2+ can activate the mitochondrial enzymes taking part in ATP production. Therefore, changes in mitochondrial Ca2+ during electrical stimulation are linked to changes in ATP supply and demand.
We and others have shown that small changes in mitochondrial volume can regulate respiration and in turn energy production. It is also known that the Ca2+ environment may regulate mitochondrial volume in isolated mitochondrial suspension raising the question whether physiological changes in Ca2+ via increasing electrically stimulated Ca2+ cycling would act in this way. We found that while increasing electrically stimulated, physiological Ca2+ cycling does not detectibly change the 'diastolic' mitochondrial long- and short-axis dimensions (i.e, volume) shortly (2.5 min) after the transition from rest to low or higher workloads, it nevertheless caused an increase in cell respiration (and in turn facilitated energy production) in both conditions. These results were in contrast to that observed by others in the isolated mitochondria models. Additionally, we found that the mechanisms that control ATP supply from the hearts mitochondria consist of both 'push' and 'pull' mechanisms and that 'pull' mechanism directly targets ATP synthase. We identified that the 'pull' mechanism is controlled by mitochondrial Ca2+ and can be further facilitated by pharmacologically regulating mitochondrial volume. At low cardiac workload, the 'push' mechanism is sufficient to match ATP supply and demand, and the mitochondrial transmembrane ADP/Pi gradient is presumably sufficient to drive the 'push' and 'pull' mechanisms. However, under the same experimental conditions, pharmacological induction of a regulatory mitochondrial volume increase was found to facilitate mitochondrial Ca2+ entry responsible for further pushing respiration, whereas at higher workloads, mitochondrial Ca2+ entry did not require such facilitation, and in turn was sufficient and essential to drive both "push" and 'pull' effects on respiration. Moreover, pharmacologically-enhanced mitochondrial Ca2+ accumulation (without changing cytosolic Ca2+) was also found to push respiration. Facilitation of these 'push' and 'pull' mechanisms is being examined as a potential treatment to reverse signaling defects in matching ATP supply and demand, such as occurs in heart failure which afflicts millions of people, especially the elderly population.
We discovered that mammalian ATP synthase, previously believed to be a machine running exclusively on H+, actually utilizes almost 4 K+ for every H+ to make ATP inside intact cellular mitochondria. Thus, ATP synthase is, for the first time, identified as a primary mitochondrial K+ uniporter, i.e., the primary way for K+ to enter mitochondria; furthermore, since this K+ entry is directly proportional to ATP synthesis and regulates matrix volume, this in turn serves the function of directing the matching of cellular energy utilization with its production.
For the first time, we show that the chemo-mechanical efficiency of ATP synthase can be up-regulated, and that this occurs by certain members of the Bcl-2 family and by certain K+ channel openers acting via an intrinsic regulatory factor of ATP synthase, IF1, which we identified as itself a novel and previously unrecognized member of the Bcl-2 protein family.
As a consequence of the foregoing, we discovered that ATP synthase is also a recruitable mitochondrial ATP-dependent K+ channel which serves critical functions in cell protection signaling that can limit the damage of ischemia-reperfusion injury. Thus, we discovered the molecular identity of two mitochondrial potassium channels, an entirely new function set for ATP synthase, and what is likely the primary mechanism by which mitochondrial function matches energy supply with demand for all cells in the body.
We discovered that IF1 is a novel, highly conserved BH3-only member of the Bcl-2 protein family displaying, in addition to the BH3 linear sequence motif, a functional BH3-domain-like molecular recognition feature (MoRF) which enables the modulation of ATP synthase function. The phylogenetic tree shows that IF1s linear motif is most closely related to the BH3-only proteins (e.g. Bak, Bid, etc.).
These findings will fundamentally change our understanding of the regulation of mitochondrial energy production and homeostasis. Because we now know the identity of the mitochondrial K+-uniporter to be the ATP synthase, and given its dominant permeation by K+ over H+ to make the daily equivalent of the bodys weight in ATP, the actual rate and volume of mitochondrial K+ flux cycling is huge (and not the previously believed trickle-leak).
无法提供能量以匹配人体的需求会限制功能储备的能力,在某些压力(例如缺血)中,可能会导致不可逆的细胞和组织损伤。这种匹配在高且快速波动的代谢率(如心脏)的组织中至关重要。线粒体是满足细胞需求的主要ATP供应商。线粒体使用的燃料在线粒体内部膜上运输到基质,并产生一个电子来源,其氧化还原电位能量反过来又由电子传输链利用。电子的通量反映在消耗中。从该电子流释放的能量用于将质子从基质中传输到内部线粒体膜中,形成了一种梯度,其质子 - 动力驱动ATP合酶以制造ATP。这种“上游”调节被称为“推动”机制。仍然缺乏对ATP合成酶控制机制的完整描述。已经提出了两种通用机制作为关键调节剂:1)ADP和PI浓度;细胞质中的ATP利用率/水解将ADP和PI通量增加到线粒体,因此可用的ATP产生底物量增加; 2)Ca2+浓度; ATP利用率/水解与自由胞质钙和线粒体Ca2+的变化耦合,后者控制了某些线粒体反应速率确定的酶的CA2+依赖性激活,该酶参与ATP的产生。在高水平的能量需求下,出现的问题是否与作用于ATP合酶的“推动”机理信号平行,还可以促进电子传输链氧化还原通量,从而提高ATP产生的效率。这种效果模拟了上游通量明显的额外“拉动”,这会导致特定的呼吸比例增加。尚未证明由Ca2+调节的“拉动”机制及其目标的证据。
响应胞质Ca2+的循环循环“增加”的心肌细胞在对电刺激的反应中收缩。由于收缩工作的水平,ATP被收缩元素按比例地使用。因此,从需求的角度来看,Ca2+是一个直接效应子,可以很好地在能量匹配的调节机制中发挥作用。胞质和线粒体Ca2+之间也显示了相关性。 Ca2+通过线粒体Uniporter进入线粒体,并被线粒体Na+/Ca2+交换器挤出。这导致线粒体Ca2+积累,响应刺激频率或Ca2+瞬态幅度的增加而产生。因此,线粒体中的Ca2+水平反映了心肌工作和ATP消耗的变化以及对ATP的需求。结果表明,线粒体Ca2+可以激活参与ATP产生的线粒体酶。 因此,电刺激过程中线粒体Ca2+的变化与ATP供应和需求的变化有关。
我们和其他人表明,线粒体体积的小变化可以调节呼吸和能量产生。众所周知,Ca2+环境可能会在孤立的线粒体悬浮液中调节线粒体体积,从而提出了一个问题,即通过增加电刺激的Ca2+循环的Ca2+中的生理变化是否会以这种方式起作用。我们发现,尽管增加了电刺激,但生理刺激的CA2+循环并未明显改变“舒张性”线粒体长和短轴维度(即体积)(即体积)(2.5分钟),从休息过渡到低或更高的工作负载后,它将不得不增加细胞的呼气(以及在两种情况下都会增加)。这些结果与分离的线粒体模型中其他人观察到的结果相反。此外,我们发现控制ATP从心脏线粒体供应的机制包括“推动”和“拉动”机制以及“拉动”机制直接靶向ATP合酶。我们确定“拉动”机制由线粒体Ca2+控制,可以通过药理调节线粒体体积进一步促进。在低心脏工作负载下,“推动”机制足以匹配ATP的供求,并且线粒体跨膜ADP/PI梯度大概足以驱动“推动”和“拉动”机制。然而,在相同的实验条件下,发现线粒体体积增加的药理诱导促进了线粒体CA2+进入负责进一步推动呼吸的进入,而在更高的工作量下,线粒体CA2+进入的条件不需要这种促进性,并且不需要这种促进性,而这反过来又是必不可少的,并且可以使两者都推动“推动”和“推动”效果。此外,还发现了药理学增强的线粒体Ca2+积累(不改变胞质Ca2+)可以推动呼吸。 促进这些“推动”和“拉动”机制正在被研究为一种潜在的治疗方法,以逆转匹配ATP供求的信号缺陷,例如,心力衰竭发生的情况会折磨数百万人,尤其是老年人群。
我们发现,以前认为是仅在H+上运行的机器的哺乳动物ATP合酶实际上使用了每个H+的近4 k+来使ATP在完整的细胞线粒体内部。因此,ATP合酶首次被识别为主要线粒体K+ Uniporter,即K+进入线粒体的主要方法。此外,由于此K+输入与ATP合成成正比并调节矩阵体积,因此这又具有指导细胞能利用与其生产的匹配的功能。
我们第一次表明,ATP合酶的化学机械效率可以上调,并且这是由Bcl-2家族的某些成员以及某些通过ATP Synthase的固有调节因子(IF1)作用的K+ Channel开启器,IF1的某些K+ Channel开启器,我们将其本身确定为新颖的A Nexps Ankep and Nevess Angew and Bcl-2 Protein ofernage newne and Bcl-2 Protein家族成员。
由于上述过程,我们发现ATP合酶也是可募集的线粒体ATP依赖性K+通道,它在细胞保护信号中起着关键功能,可以限制缺血 - 重新灌注损伤的损害。因此,我们发现了两个线粒体钾通道的分子身份,这是一个全新的ATP合酶功能,以及线粒体功能将能量供应与人体所有细胞需求相匹配的主要机制。
我们发现,IF1是BCl-2蛋白家族的新型,高度保守的仅BH3构件,除了BH3线性序列基序外,它是功能性BH3核心样分子识别特征(MORF),它启用ATP合酶功能的调制。系统发育树表明,IF1S线性基序与仅BH3蛋白(例如BAK,BID等)最密切相关。
这些发现从根本上将改变我们对线粒体能量生产和稳态调节的理解。因为我们现在知道线粒体K+ uniporter的身份是ATP合酶,并鉴于K+在H+上占主导地位的渗透,以使每日的ATP体重在ATP中的每日重量,线粒体K+磁通循环的实际速率和数量是巨大的(并且不是先前的Bellux bellux the the Belle-belle the the Belleak thickle-leak)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Steven Sollott的其他基金
Novel enzymatic activities of the bioluminescent protein, luciferase
生物发光蛋白荧光素酶的新型酶活性
- 批准号:89314948931494
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
GSK3b mediates convergence of protection signaling to limit mitochondrial damage
GSK3b 介导保护信号汇聚以限制线粒体损伤
- 批准号:83359378335937
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Control Mechanisms for Matching ATP Supply and Demand in Heart Mitochondria
心脏线粒体中 ATP 供需匹配的控制机制
- 批准号:1068876710688767
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
GSK3b mediates convergence of protection signaling to limit mitochondrial damage
GSK3b 介导保护信号汇聚以限制线粒体损伤
- 批准号:79640607964060
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Novel enzymatic activities of the bioluminescent protein, luciferase
生物发光蛋白荧光素酶的新型酶活性
- 批准号:79639007963900
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Control Mechanisms for Matching ATP Supply and Demand in Heart Mitochondria
心脏线粒体中 ATP 供需匹配的控制机制
- 批准号:81482038148203
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Control of mitochondrial fitness and damage
控制线粒体健康和损伤
- 批准号:93481969348196
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Novel enzymatic activities of the bioluminescent protein, luciferase
生物发光蛋白荧光素酶的新型酶活性
- 批准号:87365068736506
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
GSK3b mediates convergence of protection signaling to limit mitochondrial damage
GSK3b 介导保护信号汇聚以限制线粒体损伤
- 批准号:87366328736632
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
GSK3b mediates convergence of protection signaling to limit mitochondrial damage
GSK3b 介导保护信号汇聚以限制线粒体损伤
- 批准号:89316038931603
- 财政年份:
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
相似国自然基金
BCL-2凋亡蛋白家族选择性剪接在慢性淋巴细胞白血病伊布替尼耐药中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
BCL-2凋亡蛋白家族选择性剪接在慢性淋巴细胞白血病伊布替尼耐药中的作用及机制研究
- 批准号:82170166
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
Bcl-2家族蛋白共价抑制剂——基于结构的分子设计和共价修饰“弹头”的筛选
- 批准号:81903462
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Bcl-2家族促凋亡蛋白BH3模拟肽的合成与糖尿病相关作用靶点的确认研究
- 批准号:21907086
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
14-3-3η蛋白对BCL-2线粒体亚定位的分子导向作用及其抑制EPCs凋亡效应
- 批准号:81860051
- 批准年份:2018
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:1066875410668754
- 财政年份:2023
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Mechanism of cell lethality following loss of gene expression.
基因表达缺失后细胞致死的机制。
- 批准号:1075172310751723
- 财政年份:2023
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Nanobodies for Dissecting the Structure and Function of Oligomeric BAX
用于剖析寡聚 BAX 结构和功能的纳米抗体
- 批准号:1067728710677287
- 财政年份:2023
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Project 5: Targeting Oxidative Phosphorylation in AML
项目 5:针对 AML 中的氧化磷酸化
- 批准号:1093107010931070
- 财政年份:2023
- 资助金额:$ 53.91万$ 53.91万
- 项目类别:
Elucidation of Tumor Resistance Mechanisms in Tuberous Sclerosis Complex-Associated Renal Angiomyolipoma for the Design of Novel Nanotherapies
阐明结节性硬化症相关肾血管平滑肌脂肪瘤的肿瘤抵抗机制,用于设计新型纳米疗法
- 批准号:1058504810585048
- 财政年份:2023
- 资助金额:$ 53.91万$ 53.91万
- 项目类别: