Hydrogen sulfide mechanism of renal hypertension
硫化氢肾性高血压的机制
基本信息
- 批准号:9091516
- 负责人:
- 金额:$ 63.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Mercaptopyruvate sulfurtransferaseAffectAmino AcidsAngiographyAntihypertensive AgentsAntioxidantsAtherosclerosisBlood PressureBlood VesselsBlood capillariesCellsChemicalsChronic Kidney FailureCo-ImmunoprecipitationsCollagenConnexinsCystathionineCystathionine beta-SynthaseDevelopmentDietDiseaseEndothelial CellsEnvironmental HazardsEnzymesExtracellular MatrixExtracellular Matrix ProteinsFibrosisFunctional disorderFutureGap JunctionsGelatinase AGelatinasesGene DeliveryGenesGenetic ModelsGlomerular Filtration RateGoalsHealthHomocysteineHomocystineHydrogen SulfideHyperhomocysteinemiaHypertensionImpairmentIn VitroInflammatoryInjuryInterstitial CollagenaseInvestigationKidneyKidney DiseasesKnowledgeLeadLyaseMass Spectrum AnalysisMatrilysinMatrix MetalloproteinasesMeasuresMediatingMessenger RNAMetabolismMethodsMolecularMusNOS3 geneNitric OxideOutcomeOutcomes ResearchOxidative StressPathologyPerfusionPhysiologicalPlasmaProcessProductionRenal HypertensionRenal functionRenovascular HypertensionReportingResearchReverse Transcriptase Polymerase Chain ReactionRoentgen RaysRoleStructureSulfhydryl CompoundsSupplementationTestingTherapeuticTherapeutic AgentsTissue Inhibitor of MetalloproteinasesTissuesUp-RegulationVascular DiseasesVascular remodelingWestern Blottingblood pressure regulationcapillarycaveolin 1collagenaseconnexin 37densitygene delivery systemhistological stainsin vivoinsightkidney vascular structureneurotoxicitynovelprevent
项目摘要
DESCRIPTION (provided by applicant): For decades, hydrogen sulfide (H2S) was known only for its neurotoxicity and as an environmental hazard. Recent findings however, suggest that endogenous H2S has a variety of physiological functions and a decrease in production can lead to vascular dysfunction, atherosclerosis and hypertension. This discovery has stimulated further research into its development as a potential therapeutic agent in diseases attributed to diminished H2S synthesis. In chronic kidney disease, low levels of plasma H2S is often associated with a concomitant increase in homocysteine (Hcy), known as hyperhomocysteinemia (HHcy). HHcy is well known to cause vascular dysfunction. The cause and effect relationship of HHcy in renal disease can therefore adversely affect the final outcome. Because Hcy is a precursor of H2S, changes in the H2S metabolism can have a significant impact on HHcy-induced pathology. However, the mechanism by which HHcy causes vascular dysfunction and the role of H2S in renal protection is incompletely understood. In the body, Hcy is metabolized by three enzymes, cystathionine β-synthase (CBS), cystathionine y-lyase (CSE) and 3- mercaptopyruvate sulfurtransferase (3MST) and produce H2S. During HHcy, an impairment in these enzymes leads to deficient H2S production. Our preliminary studies suggest that HHcy results in upregulation of caveolin-1 and homocysteinylation of eNOS thus decreasing NO production. The resulting imbalance in matrix metalloproteinases and their tissue inhibitors of metalloproteinases causes accumulation of extracellular matrix proteins leading to microvascular remodeling, renal dysfunction and hypertension. In this proposal, we hypothesize that H2S offers renal protection from HHcy-induced renal damage by inhibition of caveolin-1 and modulation of eNOS. We will test this hypothesis in vivo and in vitro. Wild type (C57BL/6J) and genetic model of HHcy (CBS+/-) mice will be supplemented without or with H2S. To determine whether HHcy effects are caveolin-1 dependent we will use caveolin-1-/- mice supplemented with high Hcy diet. To ameliorate the HHcy- induced injury, single, double or triple gene delivery system employing CBS, CSE and 3MST enzymes will be used to enhance conversion of Hcy to H2S. In addition to confirming the preliminary findings, further studies will be performed for a deeper understanding into H2S-mediated improvement in renovascular dysfunction caused by pro-fibrotic and pro-inflammatory effects of HHcy. This research is novel because it evaluates gene delivery as a therapeutic option to ameliorate HHcy-induced microvascular remodeling, renal dysfunction and hypertension.
描述(由申请人提供):几十年来,人们只知道硫化氢 (H2S) 具有神经毒性和环境危害,但最近的研究结果表明,内源性 H2S 具有多种生理功能,并且其生成量减少会导致血管损伤。这一发现刺激了对其作为治疗因 H2S 合成减少而导致的疾病的潜在治疗剂的进一步研究。在慢性肾病中,血浆 H2S 水平低通常与之相关。众所周知,同型半胱氨酸 (Hcy) 升高,称为高同型半胱氨酸血症 (HHcy),因此 HHcy 与肾脏疾病的因果关系会对最终结果产生不利影响。 H2S 是 H2S 的前体,H2S 代谢的变化会对 HHcy 引起的病理产生显着影响,然而,HHcy 引起血管功能障碍的机制以及 H2S 在肾脏保护中的作用尚不清楚。在体内,Hcy 通过三种酶进行代谢:胱硫醚 β-合酶 (CBS)、胱硫醚 y-裂解酶 (CSE) 和 3-巯基丙酮酸硫转移酶 (3MST),并在 HHcy 过程中产生 H2S。我们的初步研究表明,HHcy 会导致 Caveolin-1 和 Caveolin-1 的上调。 eNOS 的同型半胱氨酸化从而减少 NO 的产生,由此导致的基质金属蛋白酶及其组织抑制剂的不平衡导致细胞外基质蛋白的积累,从而导致微血管重塑、肾功能障碍和高血压。通过抑制 Caveolin-1 和调节 eNOS 诱导肾脏损伤 我们将在野生型 (C57BL/6J) 和遗传模型中测试这一假设。 HHcy (CBS+/-) 小鼠将补充不含或补充 H2S 为了确定 HHcy 效应是否依赖于 Caveolin-1,我们将使用补充有高 Hcy 饮食的 Caveolin-1-/- 小鼠来改善 HHcy 诱导的损伤。 ,采用CBS、CSE和3MST酶的双或三基因递送系统将用于增强Hcy向H2S的转化除了确认初步结果之外,还将进行进一步的研究。更深入地了解 H2S 介导的 HHcy 促纤维化和促炎症作用引起的肾血管功能障碍的改善这项研究是新颖的,因为它评估了基因递送作为改善 HHcy 诱导的微血管重塑、肾功能障碍和高血压的治疗选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Utpal Sen其他文献
Utpal Sen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Utpal Sen', 18)}}的其他基金
miRNA Mechanism of Acute Kidney Injury in Aging
衰老过程中急性肾损伤的 miRNA 机制
- 批准号:
9752532 - 财政年份:2018
- 资助金额:
$ 63.56万 - 项目类别:
miRNA Mechanism of Acute Kidney Injury in Aging
衰老过程中急性肾损伤的 miRNA 机制
- 批准号:
9947747 - 财政年份:2018
- 资助金额:
$ 63.56万 - 项目类别:
Homocysteine and Angiotensin II in Renovascular Remodeling
同型半胱氨酸和血管紧张素 II 在肾血管重塑中的作用
- 批准号:
8108159 - 财政年份:2011
- 资助金额:
$ 63.56万 - 项目类别:
Homocysteine and Angiotensin II in Renovascular Remodeling
同型半胱氨酸和血管紧张素 II 在肾血管重塑中的作用
- 批准号:
8648856 - 财政年份:2011
- 资助金额:
$ 63.56万 - 项目类别:
Homocysteine and Angiotensin II in Renovascular Remodeling
同型半胱氨酸和血管紧张素 II 在肾血管重塑中的作用
- 批准号:
8259720 - 财政年份:2011
- 资助金额:
$ 63.56万 - 项目类别:
Homocysteine and Angiotensin II in Renovascular Remodeling
同型半胱氨酸和血管紧张素 II 在肾血管重塑中的作用
- 批准号:
8441628 - 财政年份:2011
- 资助金额:
$ 63.56万 - 项目类别:
Homocysteine & Angiotensin II in Renovascular Remodeling
同型半胱氨酸
- 批准号:
8824551 - 财政年份:2011
- 资助金额:
$ 63.56万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3型鸭甲型肝炎病毒2C蛋白氨基酸位点变异对病毒致病性的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neuroprotective actions of cystathionine g-lyase through gasotransmitter hydrogen sulfide signaling
胱硫醚 G-裂解酶通过气体递质硫化氢信号传导的神经保护作用
- 批准号:
10445502 - 财政年份:2022
- 资助金额:
$ 63.56万 - 项目类别:
Neuroprotective actions of cystathionine g-lyase through gasotransmitter hydrogen sulfide signaling
胱硫醚 G-裂解酶通过气体递质硫化氢信号传导的神经保护作用
- 批准号:
10614053 - 财政年份:2022
- 资助金额:
$ 63.56万 - 项目类别: