ER glycolipid flippases and congenital disorders of glycosylation
ER 糖脂翻转酶和先天性糖基化障碍
基本信息
- 批准号:9069623
- 负责人:
- 金额:$ 21.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAntibodiesAsparagineBindingBiochemicalBiochemical GeneticsBiological AssayBypassCarrier ProteinsCell Adhesion MoleculesCell Surface ReceptorsCell secretionCell surfaceCellsCellular biologyCharacteristicsCongenital DisordersDefectDevelopmentDiseaseDolicholDolichol PhosphatesEndoplasmic ReticulumEpitopesEukaryotaFamilyFractionationG-Protein-Coupled ReceptorsGeneticGenetic screening methodGlucosephosphatesGlycolipidsGlycoproteinsGoalsHIV Envelope Protein gp120HeadHealthHereditary DiseaseHormonesHumanHuman GeneticsHuman GenomeHydrocarbonsHydrolaseI-Cell DiseaseIndividualInheritedLaboratoriesLipidsLysosomesMannoseMembraneMembrane ProteinsMethodsMicrosomesMolecularNeurologicOligosaccharidesPathway interactionsPharmaceutical PreparationsPhenotypePolysaccharidesPost-Translational Protein ProcessingProtein GlycosylationProteinsProteomicsPublicationsReportingSideSpecificitySubstrate SpecificitySymptomsTailTechnologyTestingTimeTissuesTritonTriton X100VesicleVirus ReceptorsYeastsbasecarboxypeptidase Cconditional mutantcongenital muscular dystrophygenetic approachglycosylationhuman diseaseimmunogenicityin vivoinnovationinterestlipid transportmannose 6 phosphatemannosyl(5)-N-acetyl(2)-glucosenovelprotein profilingrat Piga proteinreconstitutionresearch studyyeast genetics
项目摘要
DESCRIPTION (provided by applicant): At least half the proteins encoded by the human genome are N-glycosylated, an essential post-translational modification. Defects in glycosylation underlie more than 100 human genetic disorders. For example, I-cell disease is caused by the inability to construct mannose-6-phosphate epitopes on N-glycans of lysosomal hydrolases, resulting in their secretion from cells rather than localization to lysosomes. Congenital Disorders of Glycosylation (CDGs), a family of severe inherited diseases with neurological and other symptoms, frequently result from defects in protein N-glycosylation. Major gaps remain in our understanding of basic glycosylation pathways. For example, assembly of the oligosaccharide donor for N-glycosylation requires flipping of three different glycolipids (Man5GlcNAc2-PP- dolichol (M5-DLO), mannose phosphate dolichol (MPD) and glucose phosphate dolichol (GPD)) from the cytoplasmic to the luminal side of the ER. These glycolipids have long hydrocarbon tails and very polar head groups. They represent key intermediates in the transition of the N-glycan biosynthetic pathway from the cytoplasmic to the luminal side of the ER. How they are flipped across the ER is a long-standing mystery. While there is compelling evidence that specific ER membrane proteins (flippases) are required, and that they have exquisite specificity for the lipids that they transport, the molecular identity of he flippases is not known. Our goal in this R21 application is to identify the glycolipid flippases responsible for flipping M5-DLO and MPD. We developed methods that recapitulate M5-DLO and MPD flipping in synthetic lipid vesicles and this technology now provides the cornerstone of the strategy that we will deploy to achieve our goal. We will use an innovative quantitative proteomics approach to identify flippase candidates from amongst yeast ER membrane proteins. We will then use our reconstitution-based assays to screen the candidates and evaluate their activity. This will provide conclusive evidence of function that we will corroborate
by in vivo tests using yeast genetics. With this strategy we expect to identify, for the first time the flippases themselves. As our approach bypasses the limitations of traditional genetic and biochemical approaches that have thus far failed to provide the molecular identity of these flippases, we believe that we have a unique opportunity to solve this decades-old problem. Our discovery will contribute to basic cell biology by revealing a new class of transport proteins, associated with an undoubtedly novel transport mechanism, and also point to new genetic loci that are associated with CDGs.
描述(由申请人提供):人类基因组编码的蛋白质至少有一半是 N-糖基化的,这是一种重要的翻译后修饰。糖基化缺陷是 100 多种人类遗传性疾病的基础。无法在溶酶体水解酶的 N-聚糖上构建 6-磷酸甘露糖表位,导致它们从细胞中分泌而不是定位到先天性糖基化障碍 (CDG) 是一类具有神经系统和其他症状的严重遗传性疾病,通常是由蛋白质 N-糖基化缺陷引起的。我们对基本糖基化途径(例如寡糖的组装)的理解仍然存在重大差距。 N-糖基化供体需要翻转三种不同的糖脂(Man5GlcNAc2-PP-dolichol (M5-DLO)、磷酸甘露糖糖脂(MPD)和磷酸葡萄糖糖脂(GPD))从细胞质到内质网腔侧,这些糖脂具有长烃尾和极性极强的头部基团,它们是 N-聚糖生物合成途径转变的关键中间体。尽管有令人信服的证据表明特定的 ER 膜蛋白,但它们如何在 ER 上翻转一直是个谜。 (翻转酶)是必需的,并且它们对其运输的脂质具有精确的特异性,但翻转酶的分子身份尚不清楚。我们在该 R21 应用中的目标是鉴定负责翻转 M5-DLO 和 MPD 的糖脂翻转酶。我们开发了在合成脂质囊泡中重现 M5-DLO 和 MPD 翻转的方法,这项技术现在为我们为实现我们的目标而部署的策略提供了基石。一种创新的定量蛋白质组学方法,用于从酵母 ER 膜蛋白中识别翻转酶候选者,然后我们将使用基于重组的测定来筛选候选者并评估其活性,这将提供我们将证实的功能的决定性证据。
通过使用酵母遗传学的体内测试,我们希望首次识别翻转酶本身,因为我们的方法绕过了迄今为止未能提供这些翻转酶分子身份的传统遗传和生化方法的局限性,我们相信,我们有一个独特的机会来解决这个几十年前的问题,我们的发现将通过揭示一类与无疑新颖的转运机制相关的新型转运蛋白,为基础细胞生物学做出贡献,并指出新的基因位点。与 CDG 相关。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes Graumann其他文献
Johannes Graumann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johannes Graumann', 18)}}的其他基金
ER glycolipid flippases and congenital disorders of glycosylation
ER 糖脂翻转酶和先天性糖基化障碍
- 批准号:
8953730 - 财政年份:2015
- 资助金额:
$ 21.19万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
- 批准号:
10651432 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Targeting a ectonucleotidase in the heart with a monoclonal antibody to prevent post-infarct heart failure
用单克隆抗体靶向心脏中的核酸外切酶以预防梗死后心力衰竭
- 批准号:
10711469 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Serogroup 19 capsule maleability leading to vaccine failure
血清群 19 胶囊的雄性能力导致疫苗失败
- 批准号:
10723991 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别: