Regenerative Therapies for Inherited Blood Disorders-iPSC differentiation

遗传性血液疾病的再生疗法 - iPSC 分化

基本信息

项目摘要

Summary 1. Objective 3.1: Understanding the ontogeny of definitive hematopoiesis During vertebrate embryonic development, multiple waves of hematopoiesis take place and are defined as either primitive or definitive. Only the intra-embryonic definitive wave provides hematopoietic stem cells (HSCs) with long-term repopulating capacity. However, most in-vitro differentiation systems developed to generate blood have successfully replicated the primitive wave, but none have been able to produce long-term repopulating HSCs. To further understand the ontogeny of definitive hematopoiesis, we have initiated basic developmental studies in collaboration with Dr. Catherine Porcher (Oxford University). Using a published in vitro differentiation system, we have identified a population of hemogenic endothelium (the precursors of HSCs). We showed that these cells do not express markers of arterial, venous, or lymphatic identity, suggesting a very early, uncommitted hemogenic endothelial population, similar to what has been reported in the primitive wave of hematopoiesis. Because hematopoietic stem cells arise within an arterial niche, and arterial endothelium contains signaling molecules important for hematopoietic and endothelial development (VEGF, Notch), we hypothesized that intra-embryonic hemogenic endothelium was different to yolk sac hemogenic endothelium due to its arterial identity. A recent publication at the single-cell level confirms that early hematopoietic progenitors in the dorsal aorta maintain the expression of arterial genes. We therefore focused on developing conditions to differentiate cells towards an arterial niche. We found that treating the cells with high levels of VEGFA led to a block in Runx1 activation in Flk-1+ hemogenic endothelium at Day 5.5 and therefore an abrogation of hematopoiesis. We also saw an increase in Dll4 ligand, an arterial marker that leads to downstream Notch signaling and further arterial differentiation. We found that the block in Runx1 activation was Notch independent. By assaying a panel of genes for arterial identity and specification, we were able to show that cells begin to acquire a more fully developed arterial program after two to three days after being replated. In FY17, we will continue developing optimal culture conditions for promoting endothelial differentiation into arterial endothelium, and for inducing the arterial endothelium towards activation of Runx1 and differentiation into definitive HSCs. Given the important role that hypoxia plays in the arterial specification of cells, as well as its critical role in the maintenance of the "stemness" of hematopoietic stem cells in the bone marrow, we will explore the role of hypoxia in the development of arterial endothelium and in the regulation of hematopoietic stem cell development as these cells arise in-vitro. Other signaling factors will be investigated, including TGF-beta, Wnt, BMP, and cAMP. 2. Objective 3.2: Development of a culture system for hematopoietic differentiation of normal human iPSCs We have established a novel system for de novo generation of easily accessible suspension human hematopoietic cells (CD45+CD34+) from iPSCs. Up to 60% of iPSC-differentiated cells have a CD45+CD34+ phenotype. These cells form colonies in clonogenic progenitor assays, albeit at reduced capacity compared to primary CD34+ cells. However, they failed to home to the bone marrow of immuno-deficient (NSG) animals and did not result in long-term engraftment after transplantation. To understand differences in engraftment potential between bona fide HSCs and iPSC-derived HSCs, we have conducted single cell RNA Seq experiments comparing both cell populations. Bioinformatic comparative expression analysis is underway to pinpoint genes or pathways that may be deregulated in iPSC-derived hematopoietic cells. 3. Objective 3.3: Differentiation of genetically corrected iPSCs derived from patients with inherited bone marrow failure syndromes into transplantable HSCs We have obtained original and genetically corrected iPSC lines derived from individuals with inherited bone marrow failure syndromes (Fanconi Anemia and Diamond-Blackfan Anemia) from the laboratories of Dr. Juan Carlos Izpisua-Belmonte (Salk Institute) and Dr. MJ Weiss (St. Jude Childrens Research Hospital), respectively. In FY17, culture conditions for optimal growth of these lines are will be optimized and the differentiation protocol developed for normal iPSCs will be evaluated for hematopoietic differentiation of patient-derived iPSCs.
概括 1。目标3.1:了解确定造血的个体发育 在脊椎动物的胚胎发育过程中,发生多个造血作用,并定义为原始或确定性。只有胚胎内确定性波才能具有长期重塑能力的造血干细胞(HSC)。但是,大多数用于产生血液的体外分化系统成功地复制了原始波,但没有一个能够产生长期重现的HSC。为了进一步了解确定性造血的个体发育,我们与凯瑟琳·波彻(Catherine Porcher)(牛津大学)合作启动了基本发展研究。使用已发表的体外分化系统,我们已经确定了血肿内皮的群体(HSC的前体)。我们表明,这些细胞不表达动脉,静脉或淋巴认同的标记,这表明非常早,不合理的血液生成内皮人群与原始造血浪潮中报道的相似。 Because hematopoietic stem cells arise within an arterial niche, and arterial endothelium contains signaling molecules important for hematopoietic and endothelial development (VEGF, Notch), we hypothesized that intra-embryonic hemogenic endothelium was different to yolk sac hemogenic endothelium due to its arterial identity.最近在单细胞水平上的出版物证实,背主动脉的早期造血祖细胞保持动脉基因的表达。因此,我们专注于开发条件,以将细胞区分为动脉裂市场。我们发现,用高水平的VEGFA处理细胞导致第5.5天的FLK-1+血液生成内皮中Runx1激活的块,因此消除了造血。我们还看到了DLL4配体的增加,DLL4配体是一种导致下游凹口信号传导和进一步的动脉分化的动脉标记。我们发现Runx1激活中的块是独立的。通过分析用于动脉认同和规范的基因面板,我们能够证明细胞在被重新被重新测试后两到三天后开始获得更全面的动脉程序。 在2017财年,我们将继续开发最佳的培养条件,以促进内皮分化为动脉内皮,并诱导动脉内皮来激活RUNX1并分化为确定的HSC。鉴于缺氧在细胞的动脉规范中发挥的重要作用,以及其在造血干细胞在骨髓中维持“干性”中的关键作用,我们将探索缺氧在动脉内皮的发育中的作用,以及在这些细胞的调节中,如这些细胞在这些细胞的调节中,这些细胞在这些细胞的调节中均为这些细胞。将研究其他信号传导因素,包括TGF-beta,Wnt,BMP和CAMP。 2。目标3.2:开发正常人IPSC造血分化的培养系统 我们已经建立了一个新的系统,用于从IPSCS开始从头产生易于获得的易于获得的悬浮悬浮液(CD45+CD34+)。多达60%的IPSC分化细胞具有CD45+ CD34+表型。这些细胞在克隆发生祖细胞测定中形成菌落,尽管与初级CD34+细胞相比,能力降低。但是,它们未能进入免疫缺陷(NSG)动物的骨髓,并且在移植后没有导致长期植入。为了了解真正的HSC和IPSC衍生的HSC之间的植入潜力差异,我们进行了单细胞RNA SEQ实验,比较了两个细胞群体。正在进行生物信息学比较表达分析,以查明在IPSC衍生的造血细胞中可能失控的基因或途径。 3。目标3.3:遗传校正的IPSC的分化,这些IPSC源自遗传性骨髓衰竭综合征为可移植HSC的患者 我们已经从遗传性骨髓衰竭综合征(Fanconi贫血和钻石 - 黑色贫血)中得出的原始和遗传校正的IPSC系,从Juan Carlos Izpisua Izpisua Belmonte博士(Salk Institute)和MJ Weiss(St. Jude Childrens Hospital)的实验室的实验室中。在2017财年,将优化这些线路最佳生长的培养条件,并将评估针对正常IPSC的分化方案,以评估患者衍生的IPSC的造血分化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andre LaRochelle其他文献

Andre LaRochelle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andre LaRochelle', 18)}}的其他基金

Gene Therapy for Inherited Blood Disorders
遗传性血液疾病的基因治疗
  • 批准号:
    10706176
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Generation of Hematopoietic Stem and Progenitor Cells from Human iPSCs
从人类 iPSC 中生成造血干细胞和祖细胞
  • 批准号:
    10706178
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Gene Therapy for Inherited Blood Disorders
遗传性血液疾病的基因治疗
  • 批准号:
    10012688
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Regenerative Therapies for Inherited Blood Disorders-Gene therapy
遗传性血液疾病的再生疗法-基因疗法
  • 批准号:
    9357240
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Hematopoietic stem cell (HSC) genetic and cellular therapies
造血干细胞 (HSC) 遗传和细胞疗法
  • 批准号:
    8939915
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Hematopoietic stem cell (HSC) development, self-renewal and differentiation
造血干细胞 (HSC) 发育、自我更新和分化
  • 批准号:
    8746716
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Gene Therapy for Inherited Blood Disorders
遗传性血液疾病的基因治疗
  • 批准号:
    10929162
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Investigation of the mechanisms of action of eltrombopag
艾曲波帕的作用机制研究
  • 批准号:
    9354134
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Regenerative Therapies for Inherited Blood Disorders
遗传性血液疾病的再生疗法
  • 批准号:
    9157455
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:
Regenerative Therapies for Inherited Blood Disorders-iPSC differentiation
遗传性血液疾病的再生疗法 - iPSC 分化
  • 批准号:
    9787984
  • 财政年份:
  • 资助金额:
    $ 58.72万
  • 项目类别:

相似国自然基金

多种动物活动对高寒草甸生态系统性状的影响
  • 批准号:
    42301054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
  • 批准号:
    32371605
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
  • 批准号:
    42306159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
  • 批准号:
    42307409
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
  • 批准号:
    32301430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 58.72万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 58.72万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 58.72万
  • 项目类别:
Mitochondrial Calcium and Neuronal Health
线粒体钙和神经元健康
  • 批准号:
    10638869
  • 财政年份:
    2023
  • 资助金额:
    $ 58.72万
  • 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
  • 批准号:
    10637981
  • 财政年份:
    2023
  • 资助金额:
    $ 58.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了