Research Project 2

研究项目2

基本信息

  • 批准号:
    10403256
  • 负责人:
  • 金额:
    $ 41.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Achilles tendinopathy is a very prevalent and costly clinical problem. However, current surgical and drug strategies for tendon repair are limited, and non-surgical strategies to treat disease focus on stimulating tendon repair through physical therapy. Thus, there is an unmet clinical need to improve treatment strategies for tendon injuries. Tendon degeneration alters the chemo-physical environment and changes biophysical inputs to resident cells (called tenocytes). Both normal and aberrant phenotypes in tendon cells are defined by the dynamic spatio- temporal organization of their genome, and so it will be important to understand how 3D genome architecture in tendon cells changes with Achilles tendinopathy and how chemo-mechanical cues regulate transcriptional and chromatin profiles in degenerative cells to develop better therapeutic strategies for tendinopathies. Furthermore, the epigenetic mechanisms responsible for the tendon phenotype change in degenerative environments are underexplored. Epigenetic drugs are available and have been used for therapeutic purposes and likely also constitute a promising avenue for treatment of tendinopathies through manipulation of the epigenetic landscape and 3D chromatin architecture of tendon cells to lock in proper cell phenotype. To address these open questions, the overall goal of Research Project is to test our hypotheses that Achilles tendinopathy alters epigenetic landscape, 3D chromatin architecture, and transcriptional signatures in tenocytes impacting their phenotype, and that these alterations can be manipulated and restored via the combination of biophysical cues and epigenetic modifiers. The proposed work is significant as it will generate new knowledge about how changes in mechanical loading and mechano-signaling across the spectrum of disease impacts genome organization and tendon cell phenotype, and how these changes define disease progression and therapeutic interventions. Our Aims are: Aim 1: Determine how Achilles tendinopathy alters the nanoscale chromatin organization and accessibility landscape of tenocytes, impacting their phenotype. Aim 2: Identify whether biophysical cues and epigenetic modifiers restore ‘healthy’ tenocyte genome organization in ‘degenerative’ tenocytes to improve therapeutic strategies. The proposed research is innovative as we will use cutting-edge genome wide and single cell analyses to study, for the first time, how Achilles tendinopathy regulates nanoscale chromatin states and transcriptional activity, using single-cell based imaging and sequencing technologies. These studies will identify novel epigenetic mechanisms of Achilles tendon pathology and disease onset, new mechanical loading paradigms, and small epigenome-modifying molecules, providing critical and novel information to support new mechano-epigenetic strategies to improve the efficacy of targeted physical therapy protocols.
项目概要 跟腱病是一个非常普遍且昂贵的临床问题,然而,目前的手术和药物。 肌腱修复策略有限,治疗疾病的非手术策略主要集中在刺激肌腱 因此,改善肌腱治疗策略的临床需求尚未得到满足。 肌腱退化改变了化学物理环境并改变了居民的生物物理输入。 肌腱细胞中的正常和异常表型都是由动态空间定义的。 基因组的时间组织,因此了解 3D 基因组结构如何在 肌腱细胞随跟腱病的变化以及化学机械线索如何调节转录和 退行性细胞中的染色质谱,以开发更好的肌腱病治疗策略。此外, 退化环境中肌腱表型变化的表观遗传机制是 表观遗传药物已经存在并已被用于治疗目的,也可能被用于治疗目的。 构成通过操纵表观遗传景观治疗肌腱病的有前途的途径 和肌腱细胞的 3D 染色质结构以锁定正确的细胞表型为了解决这些悬而未决的问题, 研究项目的总体目标是检验我们的假设,即跟腱病改变表观遗传 肌腱细胞中影响其表型的景观、3D 染色质结构和转录特征,以及 这些改变可以通过生物物理线索和表观遗传的结合来操纵和恢复 拟议的工作意义重大,因为它将产生关于机械如何变化的新知识。 多种疾病的负载和机械信号传导影响基因组组织和肌腱细胞 表型,以及这些变化如何定义疾病进展和治疗干预措施。 目标 1:确定跟腱病如何改变纳米级染色质组织和可及性 肌腱细胞的景观,影响其表型 目标 2:确定生物物理线索和表观遗传是否存在。 修饰剂恢复“退化”肌腱细胞中“健康”的肌腱细胞基因组组织,以改善治疗 拟议的研究具有创新性,因为我们将使用尖端的全基因组和单细胞研究。 首次分析研究跟腱病如何调节纳米级染色质状态和 这些研究将使用基于单细胞的成像和测序技术来识别转录活性。 跟腱病理学和疾病发生的新表观遗传机制、新机械负荷 范式和小的表观基因组修饰分子,提供关键和新颖的信息来支持新的 机械表观遗传策略可提高靶向物理治疗方案的功效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Chin Heo其他文献

Su Chin Heo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Chin Heo', 18)}}的其他基金

Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
  • 批准号:
    10706966
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
  • 批准号:
    10365877
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
  • 批准号:
    10039972
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
  • 批准号:
    10159078
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
  • 批准号:
    10604303
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
  • 批准号:
    10396050
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
  • 批准号:
    10223193
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
  • 批准号:
    10039972
  • 财政年份:
    2020
  • 资助金额:
    $ 41.66万
  • 项目类别:

相似国自然基金

基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
  • 批准号:
    82001520
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
  • 批准号:
    31900570
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
  • 批准号:
    31900602
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
  • 批准号:
    10685160
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Role of POU4F1 in a Novel Form of Ataxia
POU4F1 在新型共济失调中的作用
  • 批准号:
    10741382
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
  • 批准号:
    10735701
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Simultaneous mapping of somatic mosaicism and kb-resolution 3D genome in single cells.
单细胞中体细胞嵌合体和 kb 分辨率 3D 基因组的同时作图。
  • 批准号:
    10660575
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Tools for reversible short-term degradation of TCF-1 to address its molecular functions
用于 TCF-1 可逆短期降解以解决其分子功能的工具
  • 批准号:
    10647571
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了