Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
基本信息
- 批准号:8888891
- 负责人:
- 金额:$ 40.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATM Gene MutationATP phosphohydrolaseAddressAdvanced DevelopmentAdvanced Malignant NeoplasmAntibodiesAtaxia TelangiectasiaAtaxia-Telangiectasia-Mutated protein kinaseBindingBiochemicalBiochemical GeneticsBiochemistryBiologicalBiological AssayBiologyCancer EtiologyCell DeathCellsCellular biologyChemicalsChromosomal InstabilityChromosomesComplexCoupledDNADNA BindingDNA DamageDNA Double Strand BreakDNA IntegrationDNA RepairDNA Repair PathwayDefectDevelopmentDiseaseEukaryotaFission YeastFundingFutureGeneticGenomic InstabilityHumanHydrolysisImmunodeficiency and CancerInheritedKnowledgeLeadLinkMalignant NeoplasmsMediatingMedicineMeiosisMolecularMolecular ConformationMutagenesisMutateMutationNeurodegenerative DisordersNijmegen Breakage SyndromeNonhomologous DNA End JoiningNormal CellOutcomePathway interactionsPatientsPhenotypePlayPredispositionProcessProtein BindingProteinsRadiationRadiation ToleranceRecruitment ActivityResearch Project GrantsResistanceResolutionRoentgen RaysRoleSignal PathwaySignal TransductionSolutionsStructural BiochemistryStructureStructure-Activity RelationshipTechnologyTelomere MaintenanceTestingTherapeutic InterventionUnited States National Institutes of HealthWorkYeastsataxia telangiectasia mutated proteinbasecancer cellcancer therapychemotherapydesignendoexonucleaseendonucleasegenetic analysishuman diseaseinhibitor/antagonistinsightkillingsmicrobialmutantnucleasepublic health relevancerecombinational repairrepairedresponsesmall moleculestructural biologysuccesstelomeretoolyeast genetics
项目摘要
DESCRIPTION (provided by applicant): Defects in the Mre11-Rad50-Nbs1 (MRN) complex results in human disease including cancer, and severe DNA damage phenotypes in yeast. MRN, acting with CtIP, is essential for the repair of double- stranded DNA breaks (DSBs) by homologous recombinational repair (HRR), as well as acting in meiosis, antibody hypermutation, telomere maintenance, rescue of stalled replication forks, and DNA damage signaling through ATM kinase. Yet, the mechanistic basis for diverse MRN functions is poorly understood. We propose three Specific Aims to understand MRN, CtIP and ATM structural biochemistry, activities, conformations and interactions relevant for DSB repair and signaling. We will couple advanced biophysical technologies, including atomic-resolution crystal structures and small- angle X-ray scattering in solution, with mutagenesis, biochemistry and yeast genetic analyses. Our integrated approaches will test hypotheses that dynamic MRN conformations and macromolecular interfaces control biological responses at DSBs. In particular, our results will significantly advance knowledge of 1) Mre11 DNA-binding and nuclease mechanisms and their importance for DNA repair pathway choice and progression. 2) How Rad50 binds to DNA and uses its ATPase activity to both handoff DNA to Mre11 and allosterically regulate Mre11 nuclease activities. 3) A Rad50 patient mutation that will advance our understanding of therapeutically targetable Rad50 protein features. 4) Catalytic and non-catalytic roles of CtIP. 5)
How MRN recruits and activates ATM at DSBs. Our latest Mre11 inhibitor results and work from others in the field suggest that MRN roles in DSB repair and signaling are viable targets for the development of advanced adjunct cancer therapies, which work by synthetic lethality with current radiation and chemotherapies along with weaknesses in other DNA repair or signaling pathways arising from either inhibitors or cancer-specific genetic defects. Thus, our integrated results will provide a molecular framework for understanding cancer etiologies from DNA repair defects and for the design of advanced cancer therapies targeted against specific MRN activities. Collectively, project results will connect MRN, CtIP and ATM to cellular outcomes and human disease-states by defining interactions, conformations and mechanisms critical for genetic integrity, cancer therapy resistance, and future cancer treatments.
描述(由申请人提供):Mre11-Rad50-Nbs1 (MRN) 复合物的缺陷会导致包括癌症在内的人类疾病,而酵母中的严重 DNA 损伤表型与 CtIP 一起作用,对于双链 DNA 的修复至关重要。通过同源重组修复 (HRR) 断裂 (DSB),以及在减数分裂、抗体超突变、端粒维持、复制停滞的挽救中发挥作用然而,我们对不同 MRN 功能的机制基础知之甚少,以了解与 DSB 修复和信号传导相关的 MRN、CtIP 和 ATM 结构生物化学、活性、构象和相互作用。我们将先进的生物物理技术(包括原子分辨率晶体结构和溶液中的小角度 X 射线散射)与诱变、生物化学和酵母遗传分析相结合,我们的综合方法将测试动态 MRN 构象的假设。特别是,我们的结果将显着增进对以下方面的认识:1) Mre11 DNA 结合和核酸酶机制及其对 DNA 修复途径选择和进展的重要性;2) Rad50 如何与 DNA 结合并使用其 ATP 酶。 3) Rad50 患者突变将增进我们对治疗靶向 Rad50 蛋白的理解。 4) CtIP 的催化和非催化作用。
MRN 如何在 DSB 中招募和激活 ATM 我们最新的 Mre11 抑制剂结果以及该领域其他人的工作表明,MRN 在 DSB 修复和信号传导中的作用是开发先进辅助癌症疗法的可行目标,这些疗法通过当前辐射的合成致死作用发挥作用。因此,我们的综合结果将为了解 DNA 修复缺陷的癌症病因和晚期癌症的设计提供分子框架。总的来说,项目结果将通过定义对遗传完整性、癌症治疗耐药性和未来癌症治疗至关重要的相互作用、构象和机制,将 MRN、CtIP 和 ATM 与细胞结果和人类疾病状态联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL RUSSELL其他文献
PAUL RUSSELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL RUSSELL', 18)}}的其他基金
MMS1-MMS22 COMPLEX PROTECTS GENOME INTEGRITY IN SCHIZOSACCHAROMYCES POMBE
MMS1-MMS22 复合物保护粟酒裂殖酵母基因组完整性
- 批准号:
8171474 - 财政年份:2010
- 资助金额:
$ 40.51万 - 项目类别:
REGULATOR OF HOMOLOGOUS RECOMBINATION IN EUKARYOTIC CELLS
真核细胞同源重组的调节因子
- 批准号:
7602147 - 财政年份:2007
- 资助金额:
$ 40.51万 - 项目类别:
ANALYSIS OF OXIDATIVE STRESS PROTEINS IN S POMBE
粟酒裂殖酵母中氧化应激蛋白的分析
- 批准号:
7420714 - 财政年份:2006
- 资助金额:
$ 40.51万 - 项目类别:
Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
- 批准号:
8658009 - 财政年份:2005
- 资助金额:
$ 40.51万 - 项目类别:
Yeast Genetics and Stress Response Genes-Biomedical
酵母遗传学和应激反应基因-生物医学
- 批准号:
6897642 - 财政年份:2005
- 资助金额:
$ 40.51万 - 项目类别:
SWI1 AND SWI3 ARE COMPONENTS OF A REPLICATION FORK PROTECTION COMPLEX IN FISSIO
SWI1 和 SWI3 是 FISSIO 中复制叉保护复合体的组件
- 批准号:
7182317 - 财政年份:2005
- 资助金额:
$ 40.51万 - 项目类别:
Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
- 批准号:
9055648 - 财政年份:2005
- 资助金额:
$ 40.51万 - 项目类别:
SLX1-SLX4: SUBUNITS OF A STRUCTURE-SPECIFIC ENDONUCLEASE
SLX1-SLX4:结构特异性核酸内切酶的亚基
- 批准号:
6979702 - 财政年份:2004
- 资助金额:
$ 40.51万 - 项目类别:
ANALYSIS OF OXIDATIVE STRESS PROTEINS IN S. POMBE
粟酒裂殖酵母中氧化应激蛋白的分析
- 批准号:
6979710 - 财政年份:2004
- 资助金额:
$ 40.51万 - 项目类别:
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
- 批准号:
9055648 - 财政年份:2005
- 资助金额:
$ 40.51万 - 项目类别:
Regulation of the DNA damage response by the MRN-ATM pathway
MRN-ATM 通路对 DNA 损伤反应的调节
- 批准号:
7624294 - 财政年份:2002
- 资助金额:
$ 40.51万 - 项目类别:
Regulation of the DNA damage response by the MRN-ATM pathway
MRN-ATM 通路对 DNA 损伤反应的调节
- 批准号:
8081784 - 财政年份:2002
- 资助金额:
$ 40.51万 - 项目类别:
Regulation of the DNA damage response by the MRN-ATM pathway
MRN-ATM 通路对 DNA 损伤反应的调节
- 批准号:
7848313 - 财政年份:2002
- 资助金额:
$ 40.51万 - 项目类别: