The Role of the Dendritic Cell NADPH Oxidase During Hypertension
树突状细胞 NADPH 氧化酶在高血压过程中的作用
基本信息
- 批准号:9126144
- 负责人:
- 金额:$ 2.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAdoptive TransferAdultAffectAgeAngiotensin IIAnimalsAntigen-Presenting CellsAntigensAtherosclerosisCatecholaminesCell MaturationCell physiologyCellsCodeDOCADataDendritic CellsDendritic cell activationDevelopmentDinucleoside PhosphatesDiseaseEndothelial CellsEndotheliumEnvironmentEnzymesEssential HypertensionEtiologyFibrosisFlow CytometryHeartHeart failureHormonalHumanHypertensionITGAX geneImmunologicsInflammationInfusion proceduresInjuryKidneyKidney DiseasesLaboratoriesLeadLightLinkLipidsLysineMajor Histocompatibility ComplexMechanicsMentorsMethodologyMolecular BiologyMonitorMorbidity - disease rateMusMyelogenousMyocardial InfarctionNeuraxisNiacinamideOrganOxidasesOxidative StressPhysiologicalPlayPopulationPrevalenceProductionProteinsReactive Oxygen SpeciesResearchRodentRoleSiteSocietiesSodiumSodium ChlorideSourceStretchingStrokeSuperoxidesT-Cell ActivationT-LymphocyteTechniquesTestingTransgenic MiceVascular remodelingWorkadaptive immunityadductbasecadherin 5cell typecytokineexperienceinorganic phosphateinsightketoaldehydekidney vascular structuremacrophagemonocytemortalitynovel therapeuticsoxidationpreventpromoterpublic health relevancerecombinaseresponseskills
项目摘要
DESCRIPTION (provided by applicant): Hypertension is a leading cause of morbidity and mortality and is a key contributor to myocardial infarction, stroke, and heart failure. Oxidative injury and inflammation have been implicated in the genesis of hypertension, but the relationship between these is poorly understood. We have recently shown that isoketal-modified proteins accumulate in dendritic cells (DCs) and promote T cell activation and hypertension. Activated T cells infiltrate the kidney and vasculature and promote renal sodium reabsorption and vascular remodeling and fibrosis. Isoketals, or γ-ketoaldehydes, are lipid oxidation products that rapidly react with lysines, and we have found that these modified proteins seem to act as neoantigens in hypertension. We have also observed these in monocytes of hypertensive humans, and suspect they contribute to human hypertension. Our preliminary data indicate that isoketals are formed by reactive oxygen species (ROS) generated by the NADPH oxidases. In aim 1, I will test the hypothesis that the DC NADPH oxidase is critical for the formation of isoketals, and ultimately for T cell activation and hypertension. To accomplish this, I have developed mice in which p22phox, a critical subunit of all rodent NADPH oxidases, is deleted in myeloid DCs and activated macrophages, by crossing mice in which the coding region of p22phox is flanked by loxP sites (p22phoxloxp/loxp mice) with mice expressing Cre recombinase driven by the CD11c promoter. I will examine the effect of p22phox deletion on the ability of DCs to activate T cells, process and present antigens in both MHC-I and MHC-II. I will also examine the hypertensive response to angiotensin II and DOCA-salt challenge in these animals. In aim 2, I will test the hypothesis that the endothelial cell NADPH oxidase contributes to DC activation and formation of DC isoketal-adducts. This hypothesis is based on the concept that stimulated monocytes become activated DCs upon interaction with the endothelium, and I propose that the endothelium is primed to do this in hypertension. For this aim, I have crossed the p22phoxloxp/loxp mice with mice expressing Cre recombinase driven by an inducible (VE)-cadherin promoter. These animals will allow me to specifically delete p22phox in endothelial cells, and I will then examine how loss of the endothelial cell NADPH oxidase affects the hypertensive response to angiotensin II. I will determine how the endothelial NADPH oxidase modifies DC by conducting adoptive transfer of monocytes from GFP transgenic mice to my transgenic mice. In both aims, I will use flow cytometry to monitor DC maturation and isoketal-adduct content and determine how T cells are activated by examining their proliferation in response to DCs. Completion of these studies will lead to the identification of the main source of ROS that is responsible for the formation of isoketals in DCs that, in turn, promote inflammation and hypertension.
描述(由申请人提供):高血压是发病和死亡的主要原因,并且是心肌梗塞、中风和心力衰竭的关键因素。氧化损伤和炎症与高血压的发生有关,但它们之间的关系是。我们最近发现异缩酮修饰的蛋白质在树突状细胞 (DC) 中积累并促进 T 细胞活化和高血压。异酮醛或γ-酮醛是与赖氨酸快速反应的脂质氧化产物,并且我们发现这些修饰的蛋白质似乎在高血压中充当新抗原。存在于高血压人群的单核细胞中,我们怀疑它们会导致人类高血压。在目标 1 中,我将测试 DC NADPH 氧化酶对于异缩酮的形成以及最终对于 T 细胞激活和高血压至关重要的假设。所有啮齿类动物的 NADPH 氧化酶,通过与 p22phox 编码区侧翼为 loxP 位点的小鼠杂交,在骨髓 DC 和活化的巨噬细胞中被删除(p22phoxp/loxp 小鼠)与表达由 CD11c 启动子驱动的 Cre 重组酶的小鼠,我将检查 p22phox 缺失对 DC 激活 T 细胞、处理和呈递 MHC-I 和 MHC-II 抗原的能力的影响。还将检查这些动物对血管紧张素 II 和 DOCA 盐挑战的高血压反应。在目标 2 中,我将检验内皮细胞的假设。 NADPH 氧化酶有助于 DC 活化和 DC 异缩酮加合物的形成,这一假设基于这样的概念:受刺激的单核细胞在与内皮细胞相互作用后会变成活化的 DCs,并且我认为内皮细胞已准备好在高血压中做到这一点。 ,我将 p22phoxloxp/loxp 小鼠与表达由诱导型 (VE)-钙粘蛋白启动子驱动的 Cre 重组酶的小鼠进行了杂交,这些动物将使我能够做到这一点。特异性删除内皮细胞中的 p22phox,然后我将检查内皮细胞 NADPH 氧化酶的缺失如何影响对血管紧张素 II 的高血压反应。在这两个目标中,我将使用流式细胞术来监测 DC 成熟和异缩酮加合物含量并确定 T 细胞如何被激活。通过检查它们对 DC 的增殖反应,完成这些研究将确定 ROS 的主要来源,ROS 负责在 DC 中形成异缩酮,进而促进炎症和高血压。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roxana Loperena其他文献
Roxana Loperena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
N6-甲基腺苷(m6A)修饰的LINC00673通过调节SRSF3稳定性促进乳腺癌转移和化疗耐药的机制研究
- 批准号:82303500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全新单磷酸腺苷化修饰催化结构域S-HxxxE的发现及在病原菌感染中的作用
- 批准号:32370185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N6-甲基腺苷修饰的circ_0048766参与三阴性乳腺癌生长转移和免疫逃逸的功能及其机制研究
- 批准号:82360468
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中性粒细胞凋亡囊泡通过ENPP1-NT5E-腺苷通路调节炎症反应促进口腔黏膜再生的机制研究
- 批准号:82301099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ablating Liver Metastases with SBRT to Enhance Immune Checkpoint Blockade in Melanoma
用 SBRT 消融肝转移以增强黑色素瘤的免疫检查点封锁
- 批准号:
10562707 - 财政年份:2023
- 资助金额:
$ 2.82万 - 项目类别:
A role of DPP4 in T cell trafficking and vascular inflammation
DPP4 在 T 细胞运输和血管炎症中的作用
- 批准号:
9883574 - 财政年份:2020
- 资助金额:
$ 2.82万 - 项目类别: