Establishment and Maintenance of the Spinal Cord Transition Zones

脊髓过渡区的建立和维护

基本信息

  • 批准号:
    8810146
  • 负责人:
  • 金额:
    $ 5.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The basic architecture of the vertebrate nervous system is divided into separate domains, the peripheral nervous system (PNS) and the central nervous system (CNS), that are connected by axons that travel through the boundary of these domains and creates a directional flow of information that controls the vertebrate body. Although the action potentials along axons that carry this information freely pass the CNS/PNS boundary, glial cells, which are essential for proper function of the axons, are not permitted to transverse this boundary. This restriction demarcates the two myelinating glial subtypes of the nervous system, with oligodendrocytes restricted to the CNS and Schwann cells limited to the PNS. How certain cell types are permitted to transverse the boundary while axons freely navigate across or the functional significance of separating these cells to specific domains is unknown. The importance of this boundary is underscored by the discovery that ectopically-located cells have been visualized in multiple neurological diseases including multiple sclerosis. In order for us to understand how this boundary is established and maintained to produce a functional neuronal circuit, we must evaluate its development in a way that allows us to visualize the dynamic interaction of the cells at the boundary. For this reason, I chose to utilize a model system that allows me to visualize cell-cell interactions before, during and after specific manipulation of single cells in an intact animal. The long-term goal of this proposal is to understand the development of the boundary between the CNS and PNS. Preliminary data from this system suggests that a previously unidentified cell-type that originates from the CNS, migrates through the CNS/PNS boundary where motor axons exit the spinal cord and occupies the PNS where it restricts CNS-located glia from exiting the spinal cord. Whether this same interaction also controls at the other CNS/PNS boundary region in the spinal cord will be further investigated by: 1. Characterizing which glial cell-types are located in the PNS and CNS at the CNS/PNS boundary that is located where PNS sensory axons travel into the spinal cord. Time-lapse imaging, and pharmacological/genetic ablation of glial cell precursors will give a detailed understanding of the origin of boundary glial cells and their cellular dynamics during development. 2. Investigating the cell-cell interactions of glial cells during boundary establishment and the consequence of their removal during this process. 3. Revealing the molecular requirement of Plexin/Semaphorin signaling for establishing and maintaining the glial boundary.
描述(由申请人提供):脊椎动物神经系统的基本架构分为不同的域,即周围神经系统(PNS)和中枢神经系统(CNS),它们通过穿过这些域边界的轴突连接并创建控制脊椎动物身体的定向信息流。尽管携带此信息的沿轴突的动作电位自由地通过 CNS/PNS 边界,但对于轴突正常功能至关重要的神经胶质细胞不允许穿过此边界。这种限制划分了神经系统的两种髓鞘神经胶质亚型,少突胶质细胞仅限于中枢神经系统,施万细胞仅限于三七总神经系统。如何允许某些细胞类型穿越边界,同时轴突自由导航,或者将这些细胞分离到特定区域的功能意义尚不清楚。在包括多发性硬化症在内的多种神经系统疾病中观察到异位细胞的发现强调了这一边界的重要性。为了让我们了解这个边界是如何建立和维持以产生功能性神经元回路的,我们必须以一种能够使我们可视化边界处细胞的动态相互作用的方式评估其发展。出于这个原因,我选择利用一个模型系统,使我能够在对完整动物的单细胞进行特定操作之前、期间和之后可视化细胞间的相互作用。该提案的长期目标是了解 CNS 和 PNS 之间边界的发展。来自该系统的初步数据表明,一种先前未识别的源自中枢神经系统的细胞类型,通过运动轴突离开脊髓的中枢神经系统/PNS边界迁移并占据PNS,限制位于中枢神经系统的神经胶质细胞离开脊髓。这种相同的相互作用是否也控制在脊髓中的其他 CNS/PNS 边界区域将通过以下方式进一步研究: 1. 表征哪些神经胶质细胞类型位于 PNS 和 CNS 位于 PNS 的 CNS/PNS 边界处感觉轴突进入脊髓。延时成像和神经胶质细胞前体的药理学/遗传消融将详细了解边界神经胶质细胞的起源及其发育过程中的细胞动力学。 2. 研究边界建立过程中神经胶质细胞的细胞间相互作用以及在此过程中去除边界的后果。 3.揭示Plexin/Semaphorin信号传导建立和维持神经胶质边界的分子要求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cody J. Smith其他文献

Instant FLIM enables 4D in vivo lifetime imaging of intact brains
Instant FLIM 可对完整大脑进行 4D 活体终生成像
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yide Zhang;Ian H. Guldner;Evan L. Nichols;D. Benirschke;Cody J. Smith;Siyuan Zhang;S. Howard
  • 通讯作者:
    S. Howard
A distinct subset of oligodendrocyte lineage cells interact with the developing dorsal root entry during its genesis
少突胶质细胞谱系细胞的一个独特子集在其发生过程中与发育中的背根入口相互作用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren A Green;R. Gallant;Jacob P. Brandt;Evan L. Nichols;Cody J. Smith
  • 通讯作者:
    Cody J. Smith
High-speed, long-term, 4D in vivo lifetime imaging in intact and injured zebrafish and mouse brains by instant FLIM
通过即时 FLIM 对完整和受伤的斑马鱼和小鼠大脑进行高速、长期、4D 体内终生成像
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yide Zhang;Ian H. Guldner;Evan L. Nichols;D. Benirschke;Cody J. Smith;Siyuan Zhang;S. Howard
  • 通讯作者:
    S. Howard
Three-dimensional deep tissue multiphoton frequency-domain fluorescence lifetime imaging microscopy via phase multiplexing and adaptive optics
通过相位复用和自适应光学的三维深部组织多光子频域荧光寿命成像显微镜
  • DOI:
    10.1117/12.2510674
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yide Zhang;Ian H. Guldner;Evan L. Nichols;D. Benirschke;Cody J. Smith;Siyuan Zhang;S. Howard
  • 通讯作者:
    S. Howard

Cody J. Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cody J. Smith', 18)}}的其他基金

Establishment and Maintenance of the Spinal Cord Transition Zones
脊髓过渡区的建立和维护
  • 批准号:
    8718497
  • 财政年份:
    2014
  • 资助金额:
    $ 5.42万
  • 项目类别:
Sensory neuron branch self-avoidance depends on UNC-6/Netrin signaling pathway
感觉神经元分支自我回避依赖于UNC-6/Netrin信号通路
  • 批准号:
    8261391
  • 财政年份:
    2011
  • 资助金额:
    $ 5.42万
  • 项目类别:
Sensory neuron branch self-avoidance depends on UNC-6/Netrin signaling pathway
感觉神经元分支自我回避依赖于UNC-6/Netrin信号通路
  • 批准号:
    8127284
  • 财政年份:
    2011
  • 资助金额:
    $ 5.42万
  • 项目类别:

相似国自然基金

神经系统中动作电位双稳传导研究
  • 批准号:
    12375033
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
  • 批准号:
    31930061
  • 批准年份:
    2019
  • 资助金额:
    303 万元
  • 项目类别:
    重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
  • 批准号:
    61901469
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
  • 批准号:
    81900300
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
  • 批准号:
    10586393
  • 财政年份:
    2023
  • 资助金额:
    $ 5.42万
  • 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
  • 批准号:
    10669767
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
  • 批准号:
    10599091
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
  • 批准号:
    10608370
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
  • 批准号:
    10351918
  • 财政年份:
    2022
  • 资助金额:
    $ 5.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了