Preventing Total Hip Modular Junction Fretting through Optimal Surface Topography
通过最佳表面形貌防止全髋关节模块化连接微动
基本信息
- 批准号:8895520
- 负责人:
- 金额:$ 7.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAlloysAreaArthroplastyCharacteristicsCorrosionCouplesDataDimensionsEquipment MalfunctionEvaluationExhibitsExperimental DesignsFaceFailureFinite Element AnalysisGeometryGoalsHeadHeightHip region structureHumanImplantInternationalInvestigationKnowledgeLaboratoriesLeadLinkLiteratureMeasuresMechanicsMedical Care CostsMetalsMissionModelingNeckOperative Surgical ProceduresPatientsPatternPhysiologicalPlayPublic HealthQuality of lifeReactionReportingResearchRetrievalRoleRunningSpecific qualifier valueStandardizationStressSurfaceSurgeonTestingTiAl6V4TissuesTorqueTweensUnited StatesUnited States National Institutes of HealthWorkbasecost effectivedesigndisabilityforgivenessimprovedimproved functioningin vivoinnovationnovelpreventpublic health relevancescreening
项目摘要
DESCRIPTION (provided by applicant): There is a fundamental gap in understanding how modular taper junctions behave in vivo, as indicated by the recent resurgence of problems with modular taper junctions in total hip arthroplasty (THA). Specifically, the topography of the trunnion and head taper surfaces, in the form of circumferential machining marks, is suspected to play a role. Continued existence of this gap represents an important problem because until it is filled, knowledge of how to improve modular junctions remains largely incomprehensible. The long term goal is to determine trunnion-head taper surface topography combinations that minimize micromotion in vivo and allow for the greatest forgiveness during assembly, thereby reducing the potential for fretting and corrosion. The overall objective of this application is to determine the relationship between surface topography and implant stability after assembly and cyclic loading and identify target best surface topographies for modern THAs. The central hypothesis is that surface topographies with shallower, more widely spaced machining marks will have higher pull-off loads and turn-off torques after assembly, less micromotion under cyclical loading, and less severe damage on retrieved implants. The rationale underlying the proposed research is that, determining the surface topography that minimizes micromotion will result in improved modular junctions, reducing implant failure. The central hypothesis will be tested under three specific aims: 1) Characterize trunnion- head taper surface topographies, global implant dimensions, and damage patterns of retrieved THAs; 2) Determine the factor most important for initial implant stability and later stability during cyclic loading by performin a parametric FEA of trunnion-head taper surface topography, load, implant global geometry, and material; and 3) Experimentally test both initial stability and stability under cyclic loading of trunnion-head taper topography combinations identified as ideal using FEA. Under aim 1, retrieval analysis will be used to identify ranges of implant characteristics consistent with grade of damage for evaluation with FEA. FEA will be used to achieve aim 2 to determine the surface topography that results in highest pull-off force and turn-off moment and lowest micromotion under cyclical loading. Experimental testing will be performed in aim 3 of the FEA identified best topographies. The approach is innovative because of the novel multi-scale FEA approach which links a global THA model to the local surface topography to determine how the local surface topography affects the entire implant. As a consequence, new strategies for reducing fretting and corrosion of modular taper junctions are expected to result. The proposed research is significant because it is the first step towards determining how to decrease fretting and corrosion in modular taper junctions. Ultimately, such knowledge has the potential to advance both FEA and experimental design and help reduce the growing burden of TKA revision surgery in the United States.
描述(由申请人提供):正如最近在全髋关节置换术(THA)中模块化锥形连接问题的再次出现所表明的那样,在理解模块化锥形连接如何在体内表现方面存在根本性的差距,特别是耳轴和耳轴的地形。头部锥面以圆周加工痕迹的形式被怀疑发挥了作用,这种间隙的持续存在代表了一个重要的问题,因为在它被填充之前,如何改进模块化的知识。长期目标是确定耳轴头锥形表面形貌组合,以最大限度地减少体内微运动并在组装过程中实现最大的容错性,从而减少微动和腐蚀的可能性。确定组装和循环加载后表面形貌与种植体稳定性之间的关系,并确定现代 THA 的目标最佳表面形貌。核心假设是表面形貌具有更浅、间隔更宽的加工痕迹。组装后将具有更高的拉脱负载和关闭扭矩,循环负载下的微运动更少,并且对回收的植入物造成的损害更小。拟议研究的基本原理是,确定最小化微运动的表面形貌将导致改进的模块化。中心假设将在三个具体目标下进行测试: 1) 表征耳轴头锥形表面形貌、整体植入物尺寸和回收的 THA 的损坏模式;通过对耳轴头锥形表面形貌、负载、种植体整体几何形状和材料进行参数化有限元分析,确定对循环加载期间的初始种植体稳定性和后期稳定性最重要的因素;3) 实验测试耳轴循环加载下的初始稳定性和稳定性; - 使用 FEA 确定为理想的头部锥度形貌组合 在目标 1 下,将使用检索分析来确定与 FEA 评估的损伤等级一致的种植体特性范围。目标 2 确定在循环负载下产生最高拉脱力和关断力矩以及最低微运动的表面形貌。实验测试将在 FEA 确定的最佳形貌的目标 3 中进行。该方法具有创新性。多尺度 FEA 方法将全局 THA 模型与局部表面形貌联系起来,以确定局部表面形貌如何影响整个植入物,从而有望产生减少模块化锥形连接处的微动和腐蚀的新策略。拟议的研究意义重大,因为它是确定如何减少模块化锥形连接处的微动和腐蚀的第一步。最终,这些知识有可能推进有限元分析和实验设计,并有助于减轻美国日益增加的 TKA 翻修手术负担。国家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Jean Lundberg其他文献
Hannah Jean Lundberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannah Jean Lundberg', 18)}}的其他基金
Corrosion Induced Hip Implant Failure: Synergistic Interactions of Patient, Mater
腐蚀引起的髋关节植入物失败:患者、母亲的协同相互作用
- 批准号:
9763319 - 财政年份:2016
- 资助金额:
$ 7.75万 - 项目类别:
Preventing Total Hip Modular Junction Fretting through Optimal Surface Topography
通过最佳表面形貌防止全髋关节模块化连接微动
- 批准号:
9024457 - 财政年份:2015
- 资助金额:
$ 7.75万 - 项目类别:
Calculation of Total Joint Replacement Contact Forces During Level Walking
水平行走期间总关节置换接触力的计算
- 批准号:
7939750 - 财政年份:2009
- 资助金额:
$ 7.75万 - 项目类别:
相似国自然基金
镍钛合金区域组织与性能可调的激光选区熔化成形机理研究
- 批准号:52201041
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高强铝合金搅拌摩擦焊接头高周疲劳薄弱区域与小裂纹扩展研究
- 批准号:11672010
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
高速撞击TiNi合金微观组织与应变恢复特性区域化形成机理研究
- 批准号:51571074
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
温度梯度区域熔化作用下的包晶合金凝固组织演化
- 批准号:51501091
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
多元素共同作用对Ni-Nb-Cr-Mo基合金晶界δ相析出影响机制及强韧化相关性
- 批准号:51571191
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10625065 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
In-vivo polymicrobial biofilms resulting in implant corrosion and metallosis
体内多种微生物生物膜导致植入物腐蚀和金属沉积
- 批准号:
10592179 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10839539 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10055163 - 财政年份:2020
- 资助金额:
$ 7.75万 - 项目类别: