Preventing Total Hip Modular Junction Fretting through Optimal Surface Topography
通过最佳表面形貌防止全髋关节模块化连接微动
基本信息
- 批准号:8895520
- 负责人:
- 金额:$ 7.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAlloysAreaArthroplastyCharacteristicsCorrosionCouplesDataDimensionsEquipment MalfunctionEvaluationExhibitsExperimental DesignsFaceFailureFinite Element AnalysisGeometryGoalsHeadHeightHip region structureHumanImplantInternationalInvestigationKnowledgeLaboratoriesLeadLinkLiteratureMeasuresMechanicsMedical Care CostsMetalsMissionModelingNeckOperative Surgical ProceduresPatientsPatternPhysiologicalPlayPublic HealthQuality of lifeReactionReportingResearchRetrievalRoleRunningSpecific qualifier valueStandardizationStressSurfaceSurgeonTestingTiAl6V4TissuesTorqueTweensUnited StatesUnited States National Institutes of HealthWorkbasecost effectivedesigndisabilityforgivenessimprovedimproved functioningin vivoinnovationnovelpreventpublic health relevancescreening
项目摘要
DESCRIPTION (provided by applicant): There is a fundamental gap in understanding how modular taper junctions behave in vivo, as indicated by the recent resurgence of problems with modular taper junctions in total hip arthroplasty (THA). Specifically, the topography of the trunnion and head taper surfaces, in the form of circumferential machining marks, is suspected to play a role. Continued existence of this gap represents an important problem because until it is filled, knowledge of how to improve modular junctions remains largely incomprehensible. The long term goal is to determine trunnion-head taper surface topography combinations that minimize micromotion in vivo and allow for the greatest forgiveness during assembly, thereby reducing the potential for fretting and corrosion. The overall objective of this application is to determine the relationship between surface topography and implant stability after assembly and cyclic loading and identify target best surface topographies for modern THAs. The central hypothesis is that surface topographies with shallower, more widely spaced machining marks will have higher pull-off loads and turn-off torques after assembly, less micromotion under cyclical loading, and less severe damage on retrieved implants. The rationale underlying the proposed research is that, determining the surface topography that minimizes micromotion will result in improved modular junctions, reducing implant failure. The central hypothesis will be tested under three specific aims: 1) Characterize trunnion- head taper surface topographies, global implant dimensions, and damage patterns of retrieved THAs; 2) Determine the factor most important for initial implant stability and later stability during cyclic loading by performin a parametric FEA of trunnion-head taper surface topography, load, implant global geometry, and material; and 3) Experimentally test both initial stability and stability under cyclic loading of trunnion-head taper topography combinations identified as ideal using FEA. Under aim 1, retrieval analysis will be used to identify ranges of implant characteristics consistent with grade of damage for evaluation with FEA. FEA will be used to achieve aim 2 to determine the surface topography that results in highest pull-off force and turn-off moment and lowest micromotion under cyclical loading. Experimental testing will be performed in aim 3 of the FEA identified best topographies. The approach is innovative because of the novel multi-scale FEA approach which links a global THA model to the local surface topography to determine how the local surface topography affects the entire implant. As a consequence, new strategies for reducing fretting and corrosion of modular taper junctions are expected to result. The proposed research is significant because it is the first step towards determining how to decrease fretting and corrosion in modular taper junctions. Ultimately, such knowledge has the potential to advance both FEA and experimental design and help reduce the growing burden of TKA revision surgery in the United States.
描述(由适用提供):理解模块化胶带连接在体内的表现存在根本差距,如最近在总髋关节置换术(THA)中发生模块化胶带连接问题的问题所表明的那样。具体而言,怀疑以圆周加工标记的形式的Trunnion和Head Tape表面的地形被怀疑发挥作用。持续存在这一差距代表了一个重要的问题,因为在填补之前,了解如何改善模块化连接的知识在很大程度上仍然难以理解。长期目标是确定躯干头胶带表面地形组合组合,以最大程度地减少体内的微功能,并在组装过程中提供最大的宽恕,从而降低了烦恼和腐蚀的可能性。该应用的总体目的是确定组装和循环载荷后的表面形貌与植入物稳定性之间的关系,并确定现代THAS的目标最佳表面形貌。中心假设是,具有较浅,更广泛的加工标记的表面形貌将具有更高的拉力载荷和较高的扭矩,在组装后,较小的微动物在周期性负载下较少,并且对接收的即兴造成的损害较小。提出的研究的基本原理是,确定最小化微动功能的表面地形将导致模块化连接的改善,从而减少植入物衰竭。中央假设将在三个特定目的下进行测试:1)表征躯干头表面地形,全局植入尺寸和检索到的thas的损坏模式; 2)确定对初始植入物稳定性和以后稳定性最重要的因素,该因素通过执行行李头表面地形,载荷,植入物全局几何形状和材料的参数性FEA。 3)在循环载荷下,通过FEA鉴定为理想的圆锥形锥形形状组合,在循环载荷下测试初始稳定性和稳定性。在AIM 1下,检索分析将用于识别与FEA评估等级损害一致的植入物特征范围。 FEA将用于实现AIM 2,以确定表面地形,从而导致最高拉动力和关闭力矩以及在周期性负载下的最低微功能。实验测试将在FEA确定的最佳地形的AIM 3中进行。该方法具有创新性,因为新型的多尺度FEA方法将全局THA模型与局部表面形貌联系起来,以确定局部表面形象如何影响整个植入物。结果,预计会导致模块化胶带连接的新策略和腐蚀。拟议的研究很重要,因为它是确定如何减少模块化胶带连接中的插图和腐蚀的第一步。最终,这种知识有可能同时推进FEA和实验设计,并有助于减少美国TKA修订手术的日益增长的燃烧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Jean Lundberg其他文献
Hannah Jean Lundberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannah Jean Lundberg', 18)}}的其他基金
Corrosion Induced Hip Implant Failure: Synergistic Interactions of Patient, Mater
腐蚀引起的髋关节植入物失败:患者、母亲的协同相互作用
- 批准号:
9763319 - 财政年份:2016
- 资助金额:
$ 7.75万 - 项目类别:
Preventing Total Hip Modular Junction Fretting through Optimal Surface Topography
通过最佳表面形貌防止全髋关节模块化连接微动
- 批准号:
9024457 - 财政年份:2015
- 资助金额:
$ 7.75万 - 项目类别:
Calculation of Total Joint Replacement Contact Forces During Level Walking
水平行走期间总关节置换接触力的计算
- 批准号:
7939750 - 财政年份:2009
- 资助金额:
$ 7.75万 - 项目类别:
相似国自然基金
镍钛合金区域组织与性能可调的激光选区熔化成形机理研究
- 批准号:52201041
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高强铝合金搅拌摩擦焊接头高周疲劳薄弱区域与小裂纹扩展研究
- 批准号:11672010
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
温度梯度区域熔化作用下的包晶合金凝固组织演化
- 批准号:51501091
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
高速撞击TiNi合金微观组织与应变恢复特性区域化形成机理研究
- 批准号:51571074
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
多元素共同作用对Ni-Nb-Cr-Mo基合金晶界δ相析出影响机制及强韧化相关性
- 批准号:51571191
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10625065 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
In-vivo polymicrobial biofilms resulting in implant corrosion and metallosis
体内多种微生物生物膜导致植入物腐蚀和金属沉积
- 批准号:
10592179 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10839539 - 财政年份:2022
- 资助金额:
$ 7.75万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10055163 - 财政年份:2020
- 资助金额:
$ 7.75万 - 项目类别: