A Clinical Prediction Tool to Guide Treatment of Osteoporosis in the Nursing Home

指导疗养院骨质疏松症治疗的临床预测工具

基本信息

  • 批准号:
    8930041
  • 负责人:
  • 金额:
    $ 45.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-30 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: Major osteoporotic fractures are common, morbid, and costly among long-stay nursing home residents. Despite the importance of this problem, there are no guidelines to screen nursing home residents for osteoporosis, and it is unclear which osteoporosis medications prevent fractures in long-stay residents. To address these gaps of knowledge we propose the following specific aims: 1) develop and validate a prediction tool using clinical risk factors for falls and fracture that will estimate the 2 year absolute risk of hip fracture and the year absolute risk of major osteoporotic fracture (hip, humerus, and wrist combined) in long-stay nursing home residents; 2) determine whether osteoporosis medications (i.e., bisphosphonates, calcitonin, estrogen, raloxifene, and teriparatide) reduce the incidence of hip and major osteoporotic fracture in long-stay nursing home residents; and 3) determine the clinical thresholds of risk at which osteoporosis medications reduce the incidence of hip and major osteoporotic fracture by e 20% in long-stay residents. This project will leverage an existing database that has previously linked claims data from Medicare Parts A and B with pharmacy data (Medicare Part D), clinical characteristics (Minimum Data Set), and facility level characteristics (OSCAR). Using this database we will conduct a prospective analysis on all U.S. nursing home residents enrolled in a Medicare fee-for-service plan and with e 90 day length of stay between the years 2006-2011 (>700,000 residents annually). For specific aim 1, the prediction tools will be developed entirely from clinical information that is available for all U.S long-stay residents, such as cognitive and functional status, non-osteoporosis medication use, and recent history of falls. The prediction tools will account for the high mortality in nursing home residents. For specific aim 2a, we will determine whether osteoporosis medications reduce the incidence of hip and major osteoporotic fracture in long-stay residents by comparing the incidence of fracture among "new users" of an osteoporosis medication with the incidence of fracture in "non-users," matched by propensity scores. For specific aim 2b, we will determine a threshold for pharmacologic intervention by examining the efficacy of osteoporosis drugs according to baseline fracture risk, as estimated by the fracture prediction tool. The research team has experience in pharmacoepidemiology, geriatrics, and analysis of Medicare claims data and Minimum Data Set characteristics necessary to complete this project. Our findings will be highly significant as they will provide the first guidance on screening and treatment of osteoporosis in the nursing home setting. We anticipate that our findings will be easy for providers to implement because the fracture prediction tools will be comprised of clinical information that is already available for all U.S. nursing home residents. Knowledge gained from this study could ultimately result in a decreased rate of major osteoporotic fractures in the nursing home setting, with a subsequent reduction in morbidity and health care costs.
描述:严重骨质疏松性骨折在长期入住疗养院的居民中很常见、病态且昂贵。尽管这个问题很重要,但没有筛查疗养院居民骨质疏松症的指南,也不清楚哪些骨质疏松药物可以预防长期居住的居民骨折。为了解决这些知识差距,我们提出以下具体目标:1)使用跌倒和骨折的临床风险因素开发和验证预测工具,该工具将估计髋部骨折的 2 年绝对风险和严重骨质疏松性骨折的一年绝对风险(长期入住疗养院居民的髋关节、肱骨和腕关节); 2) 确定骨质疏松药物(即双磷酸盐、降钙素、雌激素、雷洛昔芬和特立帕肽)是否可以降低长期入住疗养院居民的髋部和主要骨质疏松性骨折的发生率; 3) 确定临床风险阈值,在该阈值下,骨质疏松药物可将长期住院居民的髋部和主要骨质疏松性骨折的发生率降低 20%。该项目将利用现有数据库,该数据库先前已将 Medicare A 部分和 B 部分的索赔数据与药房数据(Medicare D 部分)、临床特征(最小数据集)和设施级别特征(OSCAR)相关联。使用该数据库,我们将对 2006 年至 2011 年期间参加 Medicare 按服务收费计划且入住时间为 90 天的所有美国疗养院居民(每年超过 700,000 名居民)进行前瞻性分析。对于具体目标 1,预测工具将完全根据所有美国长期居民可获得的临床信息开发,例如认知和功能状态、非骨质疏松药物的使用以及近期跌倒史。预测工具将解释疗养院居民的高死亡率。对于具体目标 2a,我们将通过比较骨质疏松药物“新使用者”的骨折发生率与“非使用者”的骨折发生率,确定骨质疏松药物是否可以降低长期居住居民的髋部和主要骨质疏松性骨折的发生率。 ,”与倾向得分相匹配。对于具体目标 2b,我们将根据骨折预测工具估计的基线骨折风险,通过检查骨质疏松症药物的疗效来确定药物干预的阈值。研究团队在药物流行病学、老年病学、医疗保险索赔数据分析以及完成该项目所需的最低数据集特征方面拥有丰富的经验。我们的研究结果将非常重要,因为它们将为疗养院环境中骨质疏松症的筛查和治疗提供第一个指导。我们预计我们的研究结果将很容易让提供者实施,因为骨折预测工具将包含所有美国疗养院居民已经可以获得的临床信息。从这项研究中获得的知识最终可能会降低疗养院环境中严重骨质疏松性骨折的发生率,从而降低发病率和医疗费用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Dyer Berry其他文献

Sarah Dyer Berry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Dyer Berry', 18)}}的其他基金

Mentoring Patient-Oriented Research to Prevent Injury in Older Adults
指导以患者为导向的研究以防止老年人受伤
  • 批准号:
    10312142
  • 财政年份:
    2020
  • 资助金额:
    $ 45.19万
  • 项目类别:
Mentoring Patient-Oriented Research to Prevent Injury in Older Adults
指导以患者为导向的研究以防止老年人受伤
  • 批准号:
    10532744
  • 财政年份:
    2020
  • 资助金额:
    $ 45.19万
  • 项目类别:
Nursing Home Prevention of Injury in Dementia (NH PRIDE)
疗养院预防痴呆症伤害 (NH PRIDE)
  • 批准号:
    9922194
  • 财政年份:
    2019
  • 资助金额:
    $ 45.19万
  • 项目类别:
Nursing Home Prevention of Injury in Dementia (NH PRIDE)
疗养院预防痴呆症伤害 (NH PRIDE)
  • 批准号:
    10092886
  • 财政年份:
    2019
  • 资助金额:
    $ 45.19万
  • 项目类别:
A Clinical Prediction Tool to Guide Treatment of Osteoporosis in the Nursing Home
指导疗养院骨质疏松症治疗的临床预测工具
  • 批准号:
    8697322
  • 财政年份:
    2014
  • 资助金额:
    $ 45.19万
  • 项目类别:
A Clinical Prediction Tool to Guide Treatment of Osteoporosis in the Nursing Home
指导疗养院骨质疏松症治疗的临床预测工具
  • 批准号:
    9053410
  • 财政年份:
    2014
  • 资助金额:
    $ 45.19万
  • 项目类别:
Medications as Acute Precipitants of Falls in the Nursing Home Setting
疗养院环境中作为跌倒急性诱因的药物
  • 批准号:
    7989314
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
Medications as Acute Precipitants of Falls in the Nursing Home Setting
疗养院环境中作为跌倒急性诱因的药物
  • 批准号:
    8128529
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
Medications as Acute Precipitants of Falls in the Nursing Home Setting
疗养院环境中作为跌倒急性诱因的药物
  • 批准号:
    8292028
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
Medications as Acute Precipitants of Falls in the Nursing Home Setting
疗养院环境中作为跌倒急性诱因的药物
  • 批准号:
    8489232
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 45.19万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 45.19万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 45.19万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 45.19万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 45.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了