Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury

抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤

基本信息

  • 批准号:
    8694610
  • 负责人:
  • 金额:
    $ 38.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Mitochondrial bioenergetics is crucial for cell survival and death. The bioenergetic maintenance primarily depends on the integrity of mitochondrial membranes. The impermeable nature of the mitochondrial inner membrane sets the stage for redox reactions to generate ATP. Mitochondria also participate in cytosolic Ca2+ phenotype via rapid Ca2+ buffering. There are two sides to the effects of Ca2+ on mitochondrial function. Under physiological conditions, Ca2+ is beneficial for mitochondrial function to stimulate oxidation-phosphorylation and ATP synthesis. It is questionable whether these effects remain the same under pathological conditions when mitochondrial Ca2+ ([Ca2+]m) overload occurs. While [Ca2+]m signaling is crucial for both physiological and pathological processes, molecules that facilitate [Ca2+]m uptake remain unclear. [Ca2+]m buffering is exquisitely controlled by inner mitochondrial membrane transporters, exchangers and uniporter. Several proteins have been implicated to participate in [Ca2+]m uptake, including LETM1, MICU1 and MCU. Our targeted RNAi screen identified a mitochondrial inner membrane protein, Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1) that augments [Ca2+]m uptake. MCUR1 silencing abrogates [Ca2+]m uptake under normal mitochondrial membrane potential. Our results demonstrate that MCUR1 interacts with the Ru360 sensitive core component of the mitochondrial uniporter complex, Mitochondrial Ca2+ Uniporter (MCU). Based on our recent discovery, we hypothesize that MCUR1 promotes MCU-dependent [Ca2+]m overload during I/R injury, triggering mitochondrial membrane depolarization, that results in bioenergetic collapse and mitochondrial dysfunction. This proposal applies RNAi technology, mutagenesis of MCUR1 and MCU channel, biochemical, state-of-the-art imaging and an animal model system to understand how MCUR1 elicits cardiomyocyte [Ca2+]m uptake. Based on our recent identification of MCUR1 as a regulator of the uniporter complex, here in Aim 1, we will characterize the MCUR1 role in cardiomyocyte [Ca2+]m uptake, critical regions of MCUR1-MCU interaction and transcriptional regulation of MCUR1. In Aim 2 we will investigate how MCUR1 controls mitochondrial bioenergetics, ROS production and autophagy. Finally, in Aim 3 we will apply cardiac ischemia/reperfusion in vivo murine model studies to show that knockdown of MCUR1 ameliorates I/R-induced mitochondrial dysfunction and cardiomyocyte damage. Overall, the results of these studies will advance our understanding of how MCU activity is augmented under pathophysiological conditions, and suggest new strategies for controlling [Ca2+]m influx as a new treatment for cardiovascular diseases.
描述(由申请人提供):线粒体生物能学对于细胞存活和死亡至关重要。生物能维护主要取决于线粒体膜的完整性。线粒体内膜的不渗透性质为氧化还原反应生成ATP的阶段。线粒体还通过快速Ca2+缓冲参与胞质CA2+表型。 Ca2+对线粒体功能的影响有两个方面。在生理条件下,Ca2+对线粒体功能有益于刺激氧化磷酸化和ATP合成。当线粒体Ca2+([Ca2+] M)过载时,在病理条件下是否保持相同的影响是值得怀疑的。尽管[Ca2+] M信号对于生理和病理过程都至关重要,但促进[Ca2+] M摄取的分子仍不清楚。 [Ca2+] M缓冲是由内部线粒体膜转运蛋白,交换器和单位驱动器精美控制的。几种蛋白质被牵涉到参与[Ca2+] M的吸收,包括LETM1,MICU1和MCU。我们的靶向RNAi筛网确定了线粒体内膜蛋白,线粒体Ca2+ Uniporter调节剂1(MCUR1),可增强[Ca2+] m的吸收。在正常线粒体膜电位下,MCUR1沉默消除了[Ca2+] M的吸收。我们的结果表明,MCUR1与线粒体Uniporter复合物,线粒体Ca2+ Uniporter(MCU)的RU360敏感核心成分相互作用。根据我们最近的发现,我们假设MCUR1在I/R损伤过程中促进了MCU依赖性[Ca2+] M超载,从而触发了线粒体膜去极化,从而导致生物能塌陷和线粒体功能障碍。该建议应用RNAi技术,MCUR1和MCU通道的诱变,生化,最先进的成像和动物模型系统,以了解MCUR1如何引起心肌细胞[Ca2+] M Uptake。基于我们最近将MCUR1鉴定为Uniporter复合物的调节剂,在AIM 1中,我们将表征MCUR1在心肌细胞中的作用[Ca2+] M摄取,MCUR1-MCU相互作用的关键区域和MCUR1的转录调节。在AIM 2中,我们将研究MCUR1如何控制线粒体生物能学,ROS产生和自噬。最后,在AIM 3中,我们将在体内鼠模型研究中应用心脏缺血/再灌注,以表明MCUR1的敲低可以改善I/R诱导的线粒体功能障碍和心肌细胞损伤。总体而言,这些研究的结果将提高我们对在病理生理条件下如何增强MCU活性的理解,并提出控制[CA2+] M涌入的新策略,作为对心血管疾病的新治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MADESH MUNISWAMY其他文献

MADESH MUNISWAMY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MADESH MUNISWAMY', 18)}}的其他基金

Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10662656
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10791996
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10405276
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10627888
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Essential Role for SPG7 in Mitochondrial Permeability Transition Pore Assembly and Function
SPG7 在线粒体渗透性转变孔组装和功能中的重要作用
  • 批准号:
    10241316
  • 财政年份:
    2020
  • 资助金额:
    $ 38.94万
  • 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
  • 批准号:
    10062506
  • 财政年份:
    2014
  • 资助金额:
    $ 38.94万
  • 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
  • 批准号:
    10527556
  • 财政年份:
    2014
  • 资助金额:
    $ 38.94万
  • 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
  • 批准号:
    8824559
  • 财政年份:
    2014
  • 资助金额:
    $ 38.94万
  • 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
  • 批准号:
    9032520
  • 财政年份:
    2014
  • 资助金额:
    $ 38.94万
  • 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
  • 批准号:
    10331786
  • 财政年份:
    2014
  • 资助金额:
    $ 38.94万
  • 项目类别:

相似国自然基金

基于电子传递链磷酸化途径研究Rnf复合物调控瘤胃丁酸弧菌ATP合成的机理
  • 批准号:
    32202708
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ATP等辅因子调控的环磷酸腺苷异源合成途径构建
  • 批准号:
    21506097
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
  • 批准号:
    10445554
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
  • 批准号:
    10687401
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
  • 批准号:
    10625407
  • 财政年份:
    2022
  • 资助金额:
    $ 38.94万
  • 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
  • 批准号:
    9887403
  • 财政年份:
    2020
  • 资助金额:
    $ 38.94万
  • 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
  • 批准号:
    10335247
  • 财政年份:
    2020
  • 资助金额:
    $ 38.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了