Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
基本信息
- 批准号:8694610
- 负责人:
- 金额:$ 38.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP Synthesis PathwayAddressAnimal ModelAutophagocytosisBiochemicalBiochemistryBioenergeticsBiological ModelsBuffersCardiacCardiac MyocytesCardiovascular DiseasesCell DeathCell Membrane PermeabilityCell SurvivalCell membraneCellsCellular biologyChargeComplexCouplingDiseaseDown-RegulationHeartHomeostasisHypoxiaImageInner mitochondrial membraneIon ChannelIonsIschemiaLearningMaintenanceMediatingMembrane PotentialsMembrane Transport ProteinsMicaMitochondriaMitochondrial MatrixMitochondrial Membrane ProteinMolecularMusMutagenesisNatureOutcomeOxidation-ReductionOxidative StressPathologic ProcessesPathway interactionsPatternPhenotypePhosphorylationPhysiologicalPhysiological ProcessesPlayProductionProteinsRNA InterferenceReactionReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyRestRoleShapesSideSignal TransductionStagingStudy modelsTechnologyTherapeutic InterventionTissuesTranscriptional RegulationTranslatingbasecalcium uniportercell typedriving forcein vivoin vivo Modelmitochondrial dysfunctionmitochondrial membranemitochondrial permeability transition poreoxidationpreventpublic health relevancesmall hairpin RNAspatiotemporaluptake
项目摘要
DESCRIPTION (provided by applicant): Mitochondrial bioenergetics is crucial for cell survival and death. The bioenergetic maintenance primarily depends on the integrity of mitochondrial membranes. The impermeable nature of the mitochondrial inner membrane sets the stage for redox reactions to generate ATP. Mitochondria also participate in cytosolic Ca2+ phenotype via rapid Ca2+ buffering. There are two sides to the effects of Ca2+ on mitochondrial function. Under physiological conditions, Ca2+ is beneficial for mitochondrial function to stimulate oxidation-phosphorylation and ATP synthesis. It is questionable whether these effects remain the same under pathological conditions when mitochondrial Ca2+ ([Ca2+]m) overload occurs. While [Ca2+]m signaling is crucial for both physiological and pathological processes, molecules that facilitate [Ca2+]m uptake remain unclear. [Ca2+]m buffering is exquisitely controlled by inner mitochondrial membrane transporters, exchangers and uniporter. Several proteins have been implicated to participate in [Ca2+]m uptake, including LETM1, MICU1 and MCU. Our targeted RNAi screen identified a mitochondrial inner membrane protein, Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1) that augments [Ca2+]m uptake. MCUR1 silencing abrogates [Ca2+]m uptake under normal mitochondrial membrane potential. Our results demonstrate that MCUR1 interacts with the Ru360 sensitive core component of the mitochondrial uniporter complex, Mitochondrial Ca2+ Uniporter (MCU). Based on our recent discovery, we hypothesize that MCUR1 promotes MCU-dependent [Ca2+]m overload during I/R injury, triggering mitochondrial membrane depolarization, that results in bioenergetic collapse and mitochondrial dysfunction. This proposal applies RNAi technology, mutagenesis of MCUR1 and MCU channel, biochemical, state-of-the-art imaging and an animal model system to understand how MCUR1 elicits cardiomyocyte [Ca2+]m uptake. Based on our recent identification of MCUR1 as a regulator of the uniporter complex, here in Aim 1, we will characterize the MCUR1 role in cardiomyocyte [Ca2+]m uptake, critical regions of MCUR1-MCU interaction and transcriptional regulation of MCUR1. In Aim 2 we will investigate how MCUR1 controls mitochondrial bioenergetics, ROS production and autophagy. Finally, in Aim 3 we will apply cardiac ischemia/reperfusion in vivo murine model studies to show that knockdown of MCUR1 ameliorates I/R-induced mitochondrial dysfunction and cardiomyocyte damage. Overall, the results of these studies will advance our understanding of how MCU activity is augmented under pathophysiological conditions, and suggest new strategies for controlling [Ca2+]m influx as a new treatment for cardiovascular diseases.
描述(由申请人提供):线粒体生物能学对于细胞的生存和死亡至关重要。生物能的维持主要取决于线粒体膜的完整性。线粒体内膜的不渗透性为氧化还原反应生成 ATP 奠定了基础。线粒体还通过快速 Ca2+ 缓冲参与胞质 Ca2+ 表型。 Ca2+ 对线粒体功能的影响有两个方面。在生理条件下,Ca2+有利于线粒体功能,刺激氧化磷酸化和ATP合成。当线粒体 Ca2+ ([Ca2+]m) 超载发生时,这些效应在病理条件下是否保持不变是值得怀疑的。虽然 [Ca2+]m 信号传导对于生理和病理过程都至关重要,但促进 [Ca2+]m 吸收的分子仍不清楚。 [Ca2+]m 缓冲由线粒体内膜转运蛋白、交换蛋白和单向转运蛋白精确控制。多种蛋白质参与 [Ca2+]m 吸收,包括 LETM1、MICU1 和 MCU。我们的靶向 RNAi 筛选发现了一种线粒体内膜蛋白,即线粒体 Ca2+ 单向转运蛋白调节器 1 (MCUR1),它可以增强 [Ca2+]m 的吸收。 MCUR1 沉默会消除正常线粒体膜电位下的 [Ca2+]m 摄取。我们的结果表明,MCUR1 与线粒体单向转运蛋白复合物线粒体 Ca2+ 单向转运蛋白 (MCU) 的 Ru360 敏感核心成分相互作用。基于我们最近的发现,我们假设 MCUR1 在 I/R 损伤期间促进 MCU 依赖性 [Ca2+]m 过载,引发线粒体膜去极化,从而导致生物能崩溃和线粒体功能障碍。该提案应用 RNAi 技术、MCUR1 和 MCU 通道诱变、生化、最先进的成像和动物模型系统来了解 MCUR1 如何引发心肌细胞 [Ca2+]m 摄取。基于我们最近确定 MCUR1 作为单向转运蛋白复合物的调节剂,在目标 1 中,我们将描述 MCUR1 在心肌细胞 [Ca2+]m 摄取、MCUR1-MCU 相互作用的关键区域以及 MCUR1 转录调控中的作用。在目标 2 中,我们将研究 MCUR1 如何控制线粒体生物能、ROS 产生和自噬。最后,在目标 3 中,我们将应用心脏缺血/再灌注体内小鼠模型研究来表明 MCUR1 的敲低可改善 I/R 诱导的线粒体功能障碍和心肌细胞损伤。总的来说,这些研究的结果将增进我们对 MCU 活性如何在病理生理条件下增强的理解,并提出控制 [Ca2+]m 流入的新策略作为心血管疾病的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MADESH MUNISWAMY其他文献
MADESH MUNISWAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MADESH MUNISWAMY', 18)}}的其他基金
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10662656 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10791996 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10405276 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10627888 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Essential Role for SPG7 in Mitochondrial Permeability Transition Pore Assembly and Function
SPG7 在线粒体渗透性转变孔组装和功能中的重要作用
- 批准号:
10241316 - 财政年份:2020
- 资助金额:
$ 38.94万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10062506 - 财政年份:2014
- 资助金额:
$ 38.94万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10527556 - 财政年份:2014
- 资助金额:
$ 38.94万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8824559 - 财政年份:2014
- 资助金额:
$ 38.94万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
9032520 - 财政年份:2014
- 资助金额:
$ 38.94万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10331786 - 财政年份:2014
- 资助金额:
$ 38.94万 - 项目类别:
相似国自然基金
基于电子传递链磷酸化途径研究Rnf复合物调控瘤胃丁酸弧菌ATP合成的机理
- 批准号:32202708
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATP等辅因子调控的环磷酸腺苷异源合成途径构建
- 批准号:21506097
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
- 批准号:
10445554 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
- 批准号:
10625407 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
9887403 - 财政年份:2020
- 资助金额:
$ 38.94万 - 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
10335247 - 财政年份:2020
- 资助金额:
$ 38.94万 - 项目类别: