Training Program in Biostatistics for Cancer Research

癌症研究生物统计学培训计划

基本信息

  • 批准号:
    8901991
  • 负责人:
  • 金额:
    $ 26.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application is for continuation of a training program in biostatistics with a specific focus on cancer research. This training program supports six students each year. The practice of biostatistics is changing, especially in the area of cancer research. Discoveries over the past two decades into the molecular, biochemical, and genetic components of cell growth and development have changed our understanding of what makes a normal cell become cancerous, and then later metastasize. Given numerous available treatments for many cancers, each with efficacy for a subset of patients, this information has the potential to be leveraged to personalize therapy so each patient can be given the treatment that is most likely to benefit them given their cancer's molecular signature. Early detection and prevention efforts have also made inroads in numerous cancers, and demonstrate continuing promise to reduce mortality and morbidity due to cancer. The development of new methods for surveying a tumor molecularly and genetically have led to enormous, complex data sets whose relevant biological information is difficult to extract, and the intricacy and exceeding sensi- tivty of many of these methods raise considerable challenges in terms of designing studies that obtain reproducible measurements and replicable results. Designing clinical trials that can incorporate such information and take it into account in patient treatment is challenging, and requires many quantitative issues be carefully handled. Multidisciplinary research teams are at the heart of modern approaches to fighting cancer, and biostatisticians and other quantitative scientists find themselves as an increasingly crucial part of such teams, given the fundamental quantitative nature of many of the modern biomedical research challenges. Such teamwork requires that the statistician be conversant with molecular biologists, pathologists, and, of course, clinical oncologists if the group of co-investigators is to succeed. Effective biostatisticl collaboration thus requires broad training in statistics, probability, computational methods, as well as cancer biology and medical ethics. The Department of Statistics, Rice University, and the departments in the Division of Quantitative Sciences at the University of Texas M. D. Anderson Cancer Center have joined forces with their collaborators in the clinical and basic sciences to developed a unique training program that combines their respective strengths to train biostatisticians in cancer research. The goal of this Training Program in Biostatistics is to prepare a new generation of biostatisticians who will work side-by-side with biomedical investigators in modern cancer research. Our program aims to provide trainees with: - Rigorous training in statistics and probability; - Practical experience in basic and clinical cancer research; - Training in biological aspects of cancer and medical research ethics. Students in this program follow a standard course of study expected of Ph.D. students in the Department of Statistics at Rice, with additional coursework in biostatistics, biology, and ethics, as well as special seminars and workshops at both institutions. With faculty expertise in Bayesian methods, decision theory, cancer clinical trials, cancer screening, survival analysis, statistical genetics, genomics, bioinformatics, and statistical computing, trainees will receive a broad background in biostatistics necessary for modem cancer research. Summer internships and laboratory rotations provide practical experience in the student's training.
描述(由申请人提供):此申请是为了延续生物统计学的培训计划,特别关注癌症研究。该培训计划每年为六名学生提供支持。生物统计学的实践正在发生变化,尤其是在癌症领域 研究。在过去的二十年中,细胞生长和发育的分子,生化和遗传成分的发现改变了我们对使正常细胞变成癌性的原因,然后转移。给出了许多癌症的多种可用治疗方法,每种癌症都对一部分患者有疗效,此信息有可能被利用以个性化治疗,因此可以为每位患者提供鉴于其癌症的分子特征,最有可能使他们受益的疗法。早期的检测和预防工作也引起了许多癌症的侵害,并表现出持续的承诺,以降低癌症引起的死亡率和发病率。开发用于测量肿瘤分子和遗传学的新方法导致了巨大的,复杂的数据集,其相关的生物学信息难以提取,并且在设计研究研究方面,复杂性和超出了许多这些方法的敏感性引起了相当大的挑战,这些研究获得了可重复的测量结果和可重复的结果。设计可以包含此类信息并在患者治疗中考虑到这些信息的临床试验具有挑战性,并且需要仔细处理许多定量问题。跨学科研究团队是现代与癌症作斗争的核心,鉴于许多现代生物医学研究挑战的基本定量性质,生物统计学家和其他定量科学家认为自己是此类团队日益重要的部分。这样的团队合作要求统计学家要与分子生物学家,病理学家,当然还有临床肿瘤学家熟悉,如果共同研究人员要成功。因此,有效的生物稳定协作需要在统计,概率,计算方法以及癌症生物学和医学伦理方面进行广泛的培训。莱斯大学统计系以及德克萨斯大学M. D. Anderson癌症中心定量科学系的部门已与他们的合作者一起在临床和基础科学领域,制定了一项独特的培训计划,该计划结合了他们各自的培训生物统计学家在癌症研究中的培训。该生物统计学培训计划的目标是 准备新一代的生物统计学家,他们将与现代癌症研究中的生物医学研究人员并排合作。我们的计划旨在为受训者提供: - 统计和概率的严格培训; - 基础和临床癌症研究的实践经验; - 癌症和医学研究伦理生物学方面的培训。 该计划的学生遵循博士学位的标准学习课程。赖斯的统计学系学生,在生物统计学,生物学和道德方面还有其他课程,以及两个机构的特殊研讨会和讲习班。借助贝叶斯方法,决策理论,癌症临床试验,癌症筛查,生存分析,统计遗传学,基因组学,生物信息学和统计计算的教师专业知识,受训者将获得对现代癌症研究所需的生物统计学的广泛背景。暑期实习和实验室轮换为学生的培训提供了实践经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marina Vannucci其他文献

Marina Vannucci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marina Vannucci', 18)}}的其他基金

Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    7046119
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    7535458
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    8086928
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    7392341
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    6904170
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
  • 批准号:
    7218031
  • 财政年份:
    2005
  • 资助金额:
    $ 26.1万
  • 项目类别:
Training Program in Biostatistics and Cancer Research
生物统计学和癌症研究培训计划
  • 批准号:
    7922154
  • 财政年份:
    2003
  • 资助金额:
    $ 26.1万
  • 项目类别:
Training Program in Biostatistics and Cancer Research
生物统计学和癌症研究培训计划
  • 批准号:
    8124899
  • 财政年份:
    2003
  • 资助金额:
    $ 26.1万
  • 项目类别:
Training Program in Biostatistics and Cancer Research
生物统计学和癌症研究培训计划
  • 批准号:
    8312338
  • 财政年份:
    2003
  • 资助金额:
    $ 26.1万
  • 项目类别:
Training Program in Biostatistics for Cancer Research
癌症研究生物统计学培训计划
  • 批准号:
    8681375
  • 财政年份:
    2003
  • 资助金额:
    $ 26.1万
  • 项目类别:

相似国自然基金

基于计划行为理论公众实施心肺复苏的行为机制及急救培训策略研究
  • 批准号:
    82160647
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
共享航次计划青年科考人员培训对象及方案设计战略研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    100 万元
  • 项目类别:
    专项基金项目

相似海外基金

Clinical Protocol and Data Management
临床方案和数据管理
  • 批准号:
    10625762
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
Core C: Biostatistical and Bioinformatics Core
核心 C:生物统计和生物信息学核心
  • 批准号:
    10708578
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
Career Enhancement Program
职业提升计划
  • 批准号:
    10708580
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
Shared Resources Management
共享资源管理
  • 批准号:
    10625760
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
Next Generation Sequencing Shared Resource
下一代测序共享资源
  • 批准号:
    10625767
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了