Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
基本信息
- 批准号:8909603
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlkynesAnimalsApoptoticAxonAzidesBiochemicalBiological AssayCell Culture TechniquesCell SurvivalCell TransplantsCellsChemistryCicatrixCollaborationsComputer SimulationContusionsCuesDevelopmentDiffusionElastinEngraftmentEnsureEnvironmentEnzyme KineticsExtracellular MatrixFeedbackGelGelatinase AGoalsGrowthGrowth ConesHistologyHomeostasisHydrogelsImmunohistochemistryIn SituIn Situ Nick-End LabelingInflammationInflammatoryInflammatory ResponseInjuryKineticsLabelLeadLifeMechanicsModelingMotivationMusNAPVSIPQ peptideNatural regenerationNerveNerve RegenerationNeuritesNeuronal DifferentiationNeuronsNeuroprotective AgentsOutcomeOxidative StressPatientsPeptide HydrolasesPeptidesPlantsPlayProcessProductionProteinsQuality of lifeRattusReactionReactive Oxygen SpeciesRecoveryRecovery of FunctionRodentRodent ModelRoleSerine ProteaseSignal TransductionSiteSpinal cord injuryStaining methodStainsStem cell transplantSupport SystemTherapeuticTissuesTransplantationUrokinaseanimal imagingaxon growthbasebehavior testdata modelingdesigndifferential expressionimprovednerve stem cellneurodevelopmentneuron developmentneurotrophic factoroxidative damageprotein expressionpublic health relevanceresponsestem cell differentiationstem cell fatestem cell therapystem cellstherapeutic targettime usetissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Throughout tissue development and homeostasis, cells dynamically interact with the extracellular matrix (ECM). However, most materials developed to regulate stem cell fate and facilitate tissue regeneration are primarily cell-instructive, providing mechanical and biochemical signals to cells, and are not cell-responsive, that is they do not respond to the changes elicited in the delivered cells. The majority of materials that are cell-responsive simply degrade in response to cell-secreted proteases. A material that reacts to specific phenotypic changes elicited upon stem cell differentiation, such as those that occur during development, remains to be developed. A potential therapeutic target for such a material is spinal cord injury (SCI). SCI often results in severely debilitating conditins for patients, with limited clinically available treatment options. Nerve regeneration is limited by
the body's natural inflammatory response that rapidly replaces injured spinal cord tissue with scar tissue. Furthermore, this inflammatory process results in significant oxidative damage to the surviving neurons, which further hampers regeneration. The goal of this project is to remediate the damage caused by this inflammation by delivering neural stem cells (NSCs) at the injury site within a material that is both cell-instructive, facilitating engraftment and differentiation of the delivered cells, and cell-responsive, releasing a neuroprotective peptide in
response to neuronal differentiation. In Specific Aim 1, I will synthesize a material that dynamically responds to NSC differentiation by releasing a neuroprotective peptide. The peptide will be conjugated to an elastin-like protein (ELP) via a proteolytically cleavable linker using azide-alkyne "click" chemistry. Urokinase plasminogen activator (uPA) is a serine protease known to play a role in neuronal development, as it is secreted from the growth cones of axons. I hypothesize that neuronal differentiation of NSCs cultured in ELP hydrogels will result in increased uPA activity, which in turn will selectively release the neuroprotective peptide upon neuronal differentiation. In Specific Aim 2, I will develop a computational model to refine the cel-responsive material design. A reaction-diffusion model with Michaelis-Menten kinetics will be used to simulate the release of the neuroprotective peptide, and the relevant parameters will be experimentally determined. The model will be validated by culturing and differentiating NSCs in the cell-responsive ELP hydrogels and subjecting the cells to oxidative stress. In Specific Aim 3, I will deliver NSCs in the cell-responsive hydrogels to injury sites in rodent SCI contusion models and evaluate functional recovery. Material retention will be assessed with live-animal imaging, and NSC survival, engraftment, and differentiation will be assessed by histology. Recovery will be evaluated by tracing the regenerating nerves and through behavioral testing. I hypothesize that the cell-responsive material will improve the viability of the transplanted NSCs, resulting in improved functional recovery in animals treated with the cell-responsive materials.
描述(由申请人提供):在组织发育和稳态过程中,细胞与细胞外基质(ECM)动态相互作用。然而,大多数为调节干细胞命运和促进组织再生而开发的材料主要是细胞指导性的,为细胞提供机械和生化信号。大多数细胞响应材料只是响应细胞分泌而降解。一种对干细胞分化引起的特定表型变化(例如发育过程中发生的变化)做出反应的材料仍有待开发,这种材料的潜在治疗目标是经常导致严重的脊髓损伤(SCI)。临床上可用的治疗选择有限,导致患者衰弱,神经再生受到限制。
身体的自然炎症反应会迅速用疤痕组织替代受损的脊髓组织。此外,这种炎症过程会对幸存的神经元造成严重的氧化损伤,从而进一步阻碍再生。该项目的目标是修复这种炎症造成的损伤。通过在损伤部位递送神经干细胞(NSC),该材料既具有细胞指导性,促进所递送细胞的植入和分化,又具有细胞响应性,在其中释放神经保护肽
在特定目标 1 中,我将合成一种通过释放神经保护肽来动态响应 NSC 分化的材料,该肽将通过叠氮化物-炔通过蛋白水解可裂解连接物与弹性蛋白样蛋白 (ELP) 结合。 “点击”化学。尿激酶纤溶酶原激活剂 (uPA) 是一种丝氨酸蛋白酶,已知在神经元发育中发挥作用,因为它我发现在 ELP 水凝胶中培养的 NSC 的神经元分化会导致 uPA 活性增加,从而在神经元分化时选择性地释放神经保护肽。模型以完善细胞响应材料设计,采用 Michaelis-Menten 动力学的反应扩散模型将用于模拟神经保护肽的释放以及相关的释放。该模型将通过在细胞响应性 ELP 水凝胶中培养和分化 NSC 并使细胞遭受氧化应激来验证。在具体目标 3 中,我将把细胞响应性水凝胶中的 NSC 递送到损伤部位。啮齿动物 SCI 挫伤模型并评估功能恢复,将通过活体动物成像评估材料保留,并评估 NSC 存活、植入和分化。通过追踪再生神经和行为测试来评估恢复情况,我热切地希望细胞反应材料将提高移植的神经干细胞的活力,从而改善接受细胞反应材料治疗的动物的功能恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Matthew Madl其他文献
Christopher Matthew Madl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Matthew Madl', 18)}}的其他基金
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10469664 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10740968 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10299996 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
- 批准号:
9232900 - 财政年份:2015
- 资助金额:
$ 3.42万 - 项目类别:
相似国自然基金
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
NLRP3炎症小体在HEV感染致肝脏细胞焦亡过程中的作用机制
- 批准号:31802162
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modulation of NOD Strain Diabetes by ENU-Induced Mutations
ENU 诱导突变对 NOD 菌株糖尿病的调节
- 批准号:
10642549 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Combinatorial Neuroprotective Strategies for Preterm Brain Injury
早产儿脑损伤的组合神经保护策略
- 批准号:
10798705 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别: