Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
基本信息
- 批准号:8909603
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlkynesAnimalsApoptoticAxonAzidesBiochemicalBiological AssayCell Culture TechniquesCell SurvivalCell TransplantsCellsChemistryCicatrixCollaborationsComputer SimulationContusionsCuesDevelopmentDiffusionElastinEngraftmentEnsureEnvironmentEnzyme KineticsExtracellular MatrixFeedbackGelGelatinase AGoalsGrowthGrowth ConesHistologyHomeostasisHydrogelsImmunohistochemistryIn SituIn Situ Nick-End LabelingInflammationInflammatoryInflammatory ResponseInjuryKineticsLabelLeadLifeMechanicsModelingMotivationMusNAPVSIPQ peptideNatural regenerationNerveNerve RegenerationNeuritesNeuronal DifferentiationNeuronsNeuroprotective AgentsOutcomeOxidative StressPatientsPeptide HydrolasesPeptidesPlantsPlayProcessProductionProteinsQuality of lifeRattusReactionReactive Oxygen SpeciesRecoveryRecovery of FunctionRodentRodent ModelRoleSerine ProteaseSignal TransductionSiteSpinal cord injuryStaining methodStainsStem cell transplantSupport SystemTherapeuticTissuesTransplantationUrokinaseanimal imagingaxon growthbasebehavior testdata modelingdesigndifferential expressionimprovednerve stem cellneurodevelopmentneuron developmentneurotrophic factoroxidative damageprotein expressionpublic health relevanceresponsestem cell differentiationstem cell fatestem cell therapystem cellstherapeutic targettime usetissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Throughout tissue development and homeostasis, cells dynamically interact with the extracellular matrix (ECM). However, most materials developed to regulate stem cell fate and facilitate tissue regeneration are primarily cell-instructive, providing mechanical and biochemical signals to cells, and are not cell-responsive, that is they do not respond to the changes elicited in the delivered cells. The majority of materials that are cell-responsive simply degrade in response to cell-secreted proteases. A material that reacts to specific phenotypic changes elicited upon stem cell differentiation, such as those that occur during development, remains to be developed. A potential therapeutic target for such a material is spinal cord injury (SCI). SCI often results in severely debilitating conditins for patients, with limited clinically available treatment options. Nerve regeneration is limited by
the body's natural inflammatory response that rapidly replaces injured spinal cord tissue with scar tissue. Furthermore, this inflammatory process results in significant oxidative damage to the surviving neurons, which further hampers regeneration. The goal of this project is to remediate the damage caused by this inflammation by delivering neural stem cells (NSCs) at the injury site within a material that is both cell-instructive, facilitating engraftment and differentiation of the delivered cells, and cell-responsive, releasing a neuroprotective peptide in
response to neuronal differentiation. In Specific Aim 1, I will synthesize a material that dynamically responds to NSC differentiation by releasing a neuroprotective peptide. The peptide will be conjugated to an elastin-like protein (ELP) via a proteolytically cleavable linker using azide-alkyne "click" chemistry. Urokinase plasminogen activator (uPA) is a serine protease known to play a role in neuronal development, as it is secreted from the growth cones of axons. I hypothesize that neuronal differentiation of NSCs cultured in ELP hydrogels will result in increased uPA activity, which in turn will selectively release the neuroprotective peptide upon neuronal differentiation. In Specific Aim 2, I will develop a computational model to refine the cel-responsive material design. A reaction-diffusion model with Michaelis-Menten kinetics will be used to simulate the release of the neuroprotective peptide, and the relevant parameters will be experimentally determined. The model will be validated by culturing and differentiating NSCs in the cell-responsive ELP hydrogels and subjecting the cells to oxidative stress. In Specific Aim 3, I will deliver NSCs in the cell-responsive hydrogels to injury sites in rodent SCI contusion models and evaluate functional recovery. Material retention will be assessed with live-animal imaging, and NSC survival, engraftment, and differentiation will be assessed by histology. Recovery will be evaluated by tracing the regenerating nerves and through behavioral testing. I hypothesize that the cell-responsive material will improve the viability of the transplanted NSCs, resulting in improved functional recovery in animals treated with the cell-responsive materials.
描述(由适用提供):通过组织发育和稳态,细胞与细胞外基质(ECM)动态相互作用。然而,大多数用于调节干细胞命运和促进组织再生的材料是原发性细胞结构性,为细胞提供了机械和生化信号,并且不是细胞响应性的,即它们对递送细胞中引起的变化没有响应。细胞响应性SCI的大多数材料通常会导致患者严重使人衰弱,临床上可用的治疗选择有限。神经再生受到限制
人体的自然炎症反应迅速用疤痕组织替代受伤的脊髓组织。此外,这种炎症过程会导致生存神经元的明显氧化损伤,从而进一步阻碍了再生。该项目的目的是通过在细胞结构性的材料中传递神经元(NSC)来补救这种感染所造成的损害,从而既具有细胞结构性,又支撑了交付的植入和分化。细胞和细胞反应性,释放神经保护肽
在特定目标1中,我将通过释放神经保护肽来合成一种动态响应NSC分化的材料。该肽将通过使用叠氮化物-alkyne“ Click” Chemistry的蛋白水解连接器通过蛋白水解的连接器将肽结合到弹性蛋白样蛋白(ELP)中。尿激酶纤溶酶原活化剂(UPA)是一种已知在神经元发育中起作用的丝氨酸蛋白,因为它是从轴突的生长锥中分泌的。我假设在ELP水凝胶中培养的NSC的神经元分化将导致UPA活性增加,而神经元分化后将有选择地释放神经保护肽。在特定目标2中,我将开发一个计算模型来完善响应性材料设计。使用Michaelis-Menten动力学的反应扩散模型将用于模拟神经保护肽的释放,并将通过实验确定相关参数。该模型将通过在细胞反应性ELP水凝胶中培养和区分NSC并使细胞遭受氧化应激来验证。在特定的目标3中,我将在啮齿动物SCI挫伤模型中的损伤部位传递NSC,并评估功能恢复。材料保留率将通过实时成像进行评估,NSC的存活,植入和分化将通过组织学评估。通过追踪再生神经和行为测试来评估恢复。我假设细胞反应材料将改善移植NSC的生存能力,从而改善用细胞反应材料处理的动物的功能恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Matthew Madl其他文献
Christopher Matthew Madl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Matthew Madl', 18)}}的其他基金
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10469664 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10740968 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
- 批准号:
10299996 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
- 批准号:
9232900 - 财政年份:2015
- 资助金额:
$ 3.42万 - 项目类别:
相似国自然基金
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Modulation of NOD Strain Diabetes by ENU-Induced Mutations
ENU 诱导突变对 NOD 菌株糖尿病的调节
- 批准号:
10642549 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Combinatorial Neuroprotective Strategies for Preterm Brain Injury
早产儿脑损伤的组合神经保护策略
- 批准号:
10798705 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别: